S1. Ans.(e)

Sol. From the given statements, there are two persons sit between P and 0 (either left or right). Here we get two possibilities i.e. Case 1 and Case $2 . S$ sits $3^{\text {rd }}$ to the right of L. Both 0 and L are immediate neighbors. Both P and S are immediate neighbors.

Case 1

Case2

From the given statements, M sits $2^{\text {nd }}$ to the right of S and faces to Q. Here Case 2 is ruled out now. Both N and R , are facing to each other.
So, the final arrangement-

S2. Ans.(a)

Sol. From the given statements, there are two persons sit between P and 0 (either left or right). Here we get two possibilities i.e. Case 1 and Case 2. S sits $3^{\text {rd }}$ to the right of L. Both 0 and L are immediate neighbors. Both P and S are immediate neighbors.

Case 1

Case2

From the given statements, M sits $2^{\text {nd }}$ to the right of S and faces to Q . Here Case 2 is ruled out now. Both N and R , are facing to each other.
So, the final arrangement-

S3. Ans. (c)

Sol. From the given statements, there are two persons sit between P and 0 (either left or right). Here we get two possibilities i.e. Case 1 and Case 2. S sits $3^{\text {rd }}$ to the right of L. Both 0 and L are immediate neighbors. Both P and S are immediate neighbors.

Case2

From the given statements, M sits $2^{\text {nd }}$ to the right of S and faces to Q . Here Case 2 is ruled out now. Both N and R , are facing to each other.
So, the final arrangement-

S4. Ans.(b)

Sol. From the given statements, there are two persons sit between P and 0 (either left or right). Here we get two possibilities i.e. Case 1 and Case 2. S sits $3^{\text {rd }}$ to the right of L. Both 0 and L are immediate neighbors. Both P and S are immediate neighbors.

Case2

From the given statements, M sits $2^{\text {nd }}$ to the right of S and faces to Q . Here Case 2 is ruled out now. Both N and R, are facing to each other.
So, the final arrangement-

S5. Ans. (e)

Sol. From the given statements, there are two persons sit between P and 0 (either left or right). Here we get two possibilities i.e. Case 1 and Case $2 . S$ sits $3^{\text {rd }}$ to the right of L. Both 0 and L are immediate neighbors. Both P and S are immediate neighbors.

Case2

From the given statements, M sits $2^{\text {nd }}$ to the right of S and faces to Q . Here Case 2 is ruled out now. Both N and R, are facing to each other.
So, the final arrangement-

S6. Ans. (c)
Sol. Two - R\%3, F\#5

S7. Ans. (e)
Sol. T

S8. Ans.(a)

S9. Ans.(b)

Sol. J

S10. Ans.(d)

S11. Ans.(b)

Sol. From the given statements, On Thursday Sneak a peek is playing. One game plays between Dumb charades and Sneak a Peek. Here we get 2 possibilities i.e. Case 1 and Case 2. What's My Name is playing on Friday. Only one day gap between when Cook-Off and Scavenger Hunt is playing. Cook-Off is playing before Scavenger Hunt.

Days	Case 1	Case 2
	Fun activity	Fun activity
Monday	Cook-Off	Cook-Off
Tuesday		Dumb charades
Wednesday	Scavenger Hunt	Scavenger Hunt
Thursday	Sneak a Peek	Sneak a Peek
Friday	What's My Name	What's My Name
Saturday	Dumb charades	

From the given statements, more than Two days gap between when Cook-Off and Office Trivia are playing. Here Case 1 is ruled out now.
So, the final arrangement is such as-

Days	Fun activity
Monday	Cook-Off
Tuesday	Dumb charades
Wednesd ay	Scavenger Hunt
Thursday	Sneak a Peek
Friday	What's My Name
Saturday	Office Triv ia

S12. Ans.(b)

Sol. From the given statements, On Thursday Sneak a peek is playing. One game plays between Dumb charades and Sneak a Peek. Here we get 2 possibilities i.e. Case 1 and Case 2. What's My Name is playing on Friday. Only one day gap between when Cook-Off and Scavenger Hunt is playing. Cook-Off is playing before Scavenger Hunt.

Days	Case 1	Case 2
	Fun activity	Fun activity
Monday	Cook-Off	Cook-Off
Tuesday	Wednesday	Scavenger Hunt charades
Thursday	Scavenger Hunt	
Friday	Seek What's My Name	Sneak a Peek
Saturday	What's My Name charades	

From the given statements, more than Two days gap between when Cook-Off and Office Trivia are playing. Here Case 1 is ruled out now.
So, the final arrangement is such as-

Days	Fun activity
Monday	Cook-Off
Tuesday	Dumb charades
Wednesd ay	Scavenger Hunt
Thursday	Sneak a Peek
Friday	What's My Name
Saturday	Office Triv ia

S13. Ans.(c)

Sol. From the given statements, On Thursday Sneak a peek is playing. One game plays between Dumb charades and Sneak a Peek. Here we get 2 possibilities i.e. Case 1 and Case 2. What's My Name is playing on Friday. Only one day gap between when Cook-Off and Scavenger Hunt is playing. Cook-Off is playing before Scavenger Hunt.

Days	Case 1	Case 2
	Fun activity	Fun activity
Monday	Cook-Off	Cook-Off
Tuesday		Dumb charades
Wednesday	Scavenger Hunt	Scavenger Hunt
Thursday	Sneak a Peek	Sneak a Peek
Sriday	What's My Name	What's My Name
Saturday	Dumb charades	

From the given statements, more than Two days gap between when Cook-Off and Office Trivia are playing. Here Case 1 is ruled out now.
So, the final arrangement is such as-

Days	Fun activity
Monday	Cook-Off
Tuesday	Dumb charades
Wednesd ay	Scavenger Hunt
Thursday	Sneak a Peek
Friday	What's My Name
Saturday	Office Triv ia

S14. Ans.(e)

Sol. From the given statements, On Thursday Sneak a peek is playing. One game plays between Dumb charades and Sneak a Peek. Here we get 2 possibilities i.e. Case 1 and Case 2. What's My Name is playing on Friday. Only one day gap between when Cook-Off and Scavenger Hunt is playing. Cook-Off is playing before Scavenger Hunt.

Days	Case 1	Case 2
	Fun activity	Fun activity
Monday	Cook-Off	Cook-Off
Tuesday	Dumb charades	
Wednesday	Scavenger Hunt	Scavenger Hunt
Thursday	Sneak a Peek	Sneak a Peek
Friday	What's My Name	What's My Name
Saturday	Dumb charades	

From the given statements, more than Two days gap between when Cook-Off and Office Trivia are playing. Here Case 1 is ruled out now.
So, the final arrangement is such as-

Days	Fun activity
Monday	Cook-Off
Tuesday	Dumb charades
Wednesd ay	Scavenger Hunt
Thursday	Sneak a Peek
Friday	What's My Name
Saturday	Office Triv ia

S15. Ans.(c)

Sol. From the given statements, On Thursday Sneak a peek is playing. One game plays between Dumb charades and Sneak a Peek. Here we get 2 possibilities i.e. Case 1 and Case 2. What's My Name is playing on Friday. Only one day gap between when Cook-Off and Scavenger Hunt is playing. Cook-Off is playing before Scavenger Hunt.

Days	Case 1	Case 2
	Fun activity	Fun activity
Monday	Cook-Off	Cook-Off
Tuesday		Dumb charades
Wednesday	Scavenger Hunt	Scavenger Hunt
Thursday	Sneak a Peek	Sneak a Peek
Friday	What's My Name	What's My Name
Saturday	Dumb charades	

From the given statements, more than Two days gap between when Cook-Off and Office Trivia are playing. Here Case 1 is ruled out now.
So, the final arrangement is such as-

Days	Fun activity
Monday	Cook-Off
Tuesday	Dumb charades
Wednesd ay	Scavenger Hunt
Thursday	Sneak a Peek
Friday	What's My Name
Saturday	Office Triv ia

S16. Ans.(b)
Sol.

S17. Ans.(e)
Sol.

S18. Ans.(e)
Sol.

S19. Ans.(a)
Sol.

S20. Ans.(b)
Sol.

TEST SERIES

BILINGUAL

VIDEO SOLUTIONS

IBPS 2021
 RRB PO
 PRIME

$\mathbf{9 5 +}$ Total Tests leBooks

S21. Ans.(d)

Sol.
I. $\mathrm{P}>\mathrm{T}$ (false)
II. $\mathrm{Q}<\mathrm{T}$ (false)

S22. Ans.(b)
Sol.
I. $\mathrm{N} \geq \mathrm{T}$ (false)
II. R $<\mathrm{O}$ (true)

S23. Ans.(b)

Sol.
I. D > G (false)
II. $\mathrm{E}<\mathrm{H}$ (true)

S24. Ans.(c)

Sol.

I. $\mathrm{O} \geq \mathrm{T}$ (false)
II. $\mathrm{N}<\mathrm{T}$ (false)

S25. Ans. (a)

Sol.
I. Z > D (true)
II. $V<$ F (false)

S26. Ans.(b)

Sol. There are four floors gap between Q and R. M lives on the $4^{\text {th }}$ floor. There are two persons live between M and 0 .

	CASE 1	CASE 2
FLOORS	PERSONS	PERSONS
7	Q/R	O
6		Q/R
5		
4	M	M
3		
2	R/Q	
1	O	R/Q

S lives just above M. There is one floor gap between S and Q . hence case 2 gets cancelled. N lives on one of the floor above P. Hence final arrangement will be,

FLOORS	PERSONS
7	Q
6	N
5	S
4	M
3	P
2	R
1	O

S27. Ans.(c)

Sol. There are four floors gap between Q and R. M lives on the $4^{\text {th }}$ floor. There are two persons live between M and 0 .

	CASE 1	CASE 2
FLOORS	PERSONS	PERSONS
7	Q/R	O
6		Q/R
5		
4	M	M
3		
2	R/Q	
1	0	R/Q

S lives just above M. There is one floor gap between S and Q . hence case 2 gets cancelled. N lives on one of the floor above P. Hence final arrangement will be,

FLOORS	PERSONS
7	Q
6	N
5	S
4	M
3	P
2	R
1	O

S28. Ans.(e)

Sol. There are four floors gap between Q and R. M lives on the $4^{\text {th }}$ floor. There are two persons live between M and 0 .

	CASE 1	CASE 2
FLOORS	PERSONS	PERSONS
7	Q/R	O
6		Q/R
5		
4	M	M
3		
2	R/Q	
1	O	R/Q

S lives just above M. There is one floor gap between S and Q. hence case 2 gets cancelled. N lives on one of the floor above P. Hence final arrangement will be,

FLOORS	PERSONS
7	Q
6	N
5	S
4	M
3	P
2	R
1	O

S29. Ans.(a)

Sol. There are four floors gap between Q and R . M lives on the $4^{\text {th }}$ floor. There are two persons live between M and 0 .

	CASE 1	CASE 2
FLOORS	PERSONS	PERSONS
7	Q/R	O
6		Q/R
5		
4	M	M
3		
2	R/Q	
1	O	R/Q

S lives just above M . There is one floor gap between S and Q . hence case 2 gets cancelled. N lives on one of the floor above P. Hence final arrangement will be,

FLOORS	PERSONS
7	Q
6	N
5	S
4	M
3	P
2	R
1	O

S30. Ans.(c)

Sol. There are four floors gap between Q and R. M lives on the $4^{\text {th }}$ floor. There are two persons live between M and O .

	CASE 1	CASE 2
FLOORS	PERSONS	PERSONS
7	Q/R	O
6		Q/R
5		
4	M	M
3		
2	R/Q	
1	O	R/Q

S lives just above M. There is one floor gap between S and Q . hence case 2 gets cancelled. N lives on one of the floor above P. Hence final arrangement will be,

FLOORS	PERSONS
7	Q
6	N
5	S
4	M
3	P
2	R
1	O

S31. Ans.(a)
Sol. MEAT, TEAM, MATE, META, TAME

S32. Ans.(b)
 Sol.

S33. Ans.(b)
Sol.

S34. Ans.(e)

Sol.

S35. Ans.(b)
Sol.

S36. Ans.(c)

Sol. V faces to north and sits at one of the extreme ends. There are two persons sit between S and V . Q sits $3^{\text {rd }}$ to the right of S. S is the immediate neighbor of P, who sits $2^{\text {nd }}$ to the right of $Q . R$ is neither an immediate neighbor of Q nor S.

CASE 1

CASE 2

U sits $4^{\text {th }}$ to the right of R . T does not sit at extreme ends. No two person sitting adjacent to each other faces the same direction. Hence CASE 1 gets cancelled. Final arrangement will be,

S37. Ans.(d)

Sol. V faces to north and sits at one of the extreme ends. There are two persons sit between S and V . Q sits $3^{\text {rd }}$ to the right of $S . S$ is the immediate neighbor of P, who sits $2^{\text {nd }}$ to the right of Q. R is neither an immediate neighbor of Q nor S.

CASE 1

CASE 2

U sits $4^{\text {th }}$ to the right of R . T does not sit at extreme ends. No two person sitting adjacent to each other faces the same direction. Hence CASE 1 gets cancelled. Final arrangement will be,

S38. Ans.(b)

Sol. V faces to north and sits at one of the extreme ends. There are two persons sit between S and V. Q sits $3^{\text {rd }}$ to the right of $S . S$ is the immediate neighbor of P, who sits $2^{\text {nd }}$ to the right of Q. R is neither an immediate neighbor of Q nor S.

U sits $4^{\text {th }}$ to the right of R . T does not sit at extreme ends. No two person sitting adjacent to each other faces the same direction. Hence CASE 1 gets cancelled. Final arrangement will be,

S39. Ans.(d)

Sol. V faces to north and sits at one of the extreme ends. There are two persons sit between S and V . Q sits $3^{\text {rd }}$ to the right of S. S is the immediate neighbor of P, who sits $2^{\text {nd }}$ to the right of $\mathrm{Q} . \mathrm{R}$ is neither an immediate neighbor of Q nor S.

CASE 1

U sits $4^{\text {th }}$ to the right of R . T does not sit at extreme ends. No two person sitting adjacent to each other faces the same direction. Hence CASE 1 gets cancelled. Final arrangement will be,

S40. Ans.(e)

Sol. V faces to north and sits at one of the extreme ends. There are two persons sit between S and V . Q sits $3^{\text {rd }}$ to the right of $S . S$ is the immediate neighbor of P, who sits $2^{\text {nd }}$ to the right of $Q . R$ is neither an immediate neighbor of Q nor S.

CASE 1

CASE 2

U sits $4^{\text {th }}$ to the right of R. T does not sit at extreme ends. No two person sitting adjacent to each other faces the same direction. Hence CASE 1 gets cancelled. Final arrangement will be,

S41. Ans.(b)

Sol.
Total male voters from A $=128 \times \frac{25}{4}=800$
Total female voters from $\mathrm{A}=1528-(128+800)=600$
Total male voters from $D=180 \times \frac{50}{9}=1000$
Required percentage $=\frac{600}{1000} \times 100=60 \%$

S42. Ans.(d)

Sol.
Total male voters from $B=64 \times \frac{75}{8}=600$
Total male voters from C $=144 \times \frac{50}{6}=1200$
Required difference $=1200-600=600$

S43. Ans.(a)

Sol.

Total male voters from $D=180 \times \frac{50}{9}=1000$
Total female voters from $D=1000 \times \frac{52}{100}=520$
Total male voters from $B=64 \times \frac{75}{8}=600$
Required ratio $=\frac{520}{600}=13: 15$

S44. Ans.(c)

Sol.

BANK
 MAHA PACK

Live Class, Video Course, Test Series, eBooks

Bilingual (with eBooks)
12+12 Months Validity

Total female voters from $A=128 \times \frac{25}{4} \times \frac{60}{100}=480$
Total female voters from $C=144 \times \frac{50}{6} \times \frac{70}{100}=840$
Required average $=\frac{480+840}{2}=660$

S45. Ans.(d)
Sol.
Total male voters from $A=128 \times \frac{25}{4}=800$
Total male voters from $C=144 \times \frac{50}{6}=1200$
Required percentage $=\frac{1200-800}{800} \times 100$

$$
=50 \%
$$

S46. Ans.(a)

Sol.

Let breadth of rectangle be ' x ' cm
So, length of rectangle will be ' $(x+6)^{\prime} \mathrm{cm}$
And side of square will be $\frac{(7 x+42)}{4} \mathrm{~cm}$
ATQ -
$4(2 x+6)=(7 x+42)$
$\mathrm{x}=18 \mathrm{~cm}$
Length $=24 \mathrm{~cm}$
So, side of square $=24 \times \frac{7}{4}=42 \mathrm{~cm}$
Area of square $=42 \times 42=1764 \mathrm{~cm}^{2}$

S47. Ans.(b)

Sol.
ATQ -
$\frac{1200 \times(\mathrm{R}+5) \times 2}{1600 \times R \times 3}=\frac{3}{4}$
$\mathrm{R}=10 \%$
$(R+5) \%=10+5=15 \%$

S48. Ans.(d)

Sol.

Let investment of Veer be ' x ' Rs,
So, investment of Ayush will be $(16000-x)$ Rs.
ATQ -
$\frac{(16000-x) \times 8}{(16000-x) \times 8+x \times 12}=\frac{10}{19}$
$\mathrm{x}=6000$ Rs.
Investment of Ayush $=10000$ Rs.

S49. Ans.(b)

Sol.

Let salary of Ayush $=50 \mathrm{a}$
So, Salary of Veer $=50 a \times \frac{6}{5}=60 a$
And, salary of Aniket $=50 a \times 1.4=70 a$
30% of salary of Veer $=60 a \times \frac{30}{100}=18 a$
$28 \frac{4}{7} \%$ of salary of Aniket $=70 \mathrm{a} \times \frac{2}{7}=20 a$
Required percentage $=\frac{20 a-18 a}{20 a} \times 100=10 \%$

S50. Ans. (a)

Sol.

Let efficiency of Anurag be 5a units/day
So, efficiency of Veer $=5 a \times \frac{120}{100}=6 a$ unit $/$ day
Efficiency of Sameer $=6 a \times \frac{2}{3}=4 a$ units $/$ day
Total work $=(6 a+5 a+4 a) \times 32=480 a$ units
Veer \& Sameer together $=\frac{480 a}{(6 a+4 a)}=48$ day

S51. Ans.(e)

Sol.
From I -
Reasoning + English $=26 \times 2=52$
From II -
Quant + Reasoning $=30 \times 2=60$
From I \& II together we can't get the answer the questions.

S52. Ans. (c)

Sol.
From I -
Speed of bus P \& Q is $75 \mathrm{~km} / \mathrm{h}$ and $90 \mathrm{~km} / \mathrm{hr}$ respectively

From I \& II -

Total distance between A \& B $=165 \times \frac{8}{5}=264 \mathrm{~km}$
Time taken by bus P to cover total distance from point A \& B
$=\frac{264}{75}=3 \frac{13}{25}$ hours
So, From I \& II together we can get the answer the questions.

S53. Ans.(d)

Sol.

From I-

$2 \pi r+2 r=29 \times 4$
$\mathrm{r}=14 \mathrm{~cm}$
We can find the area of circle from I.

From II -

$2 \pi r-2 r=15 \times 4$
$\mathrm{r}=14 \mathrm{~cm}$
We can find the area of circle from II.
So, either statement (I) or statement (II) by itself is sufficient to answer the question.

S54. Ans.(a)

Sol.
Let cost price $=x$
Marked price $=\frac{100 x}{70}=\frac{10 x}{7}$
Discount \% = d \%
From I -
SP of jeans $=2400$ Rs.
$\mathrm{x}=2400-300=2100 R s$.
$\mathrm{MP}=10 \times \frac{2100}{7}=3000 \mathrm{Rs}$.
Discount $=3000-2400=600$ Rs .
$\mathrm{d} \%=600 \times \frac{100}{3000}=20 \%$
From II -
Given, $x=2100$ Rs.
MP $=10 \times \frac{2100}{7}=3000 \mathrm{Rs}$.
So, Statement (I) alone is sufficient to answer the question but statement (II) alone is not sufficient to answer the questions.

S55. Ans.(c)

Sol.
Let speed of boat X \& Y in still water be ' x ' \& ' y ' respectively and speed of stream be ' s '.
Downstream speed of boat $X=x+s$
Downstream speed of boat $Y=y+s$
$\mathrm{x}-s=\frac{x}{2}$
$\mathrm{s}=\frac{x}{2}$
From I -
$\mathrm{x}+\mathrm{y}=100$
$\mathrm{x}=100-y$

From II -
$40=2(y+s)-2(x+s)$
$\mathrm{x}=\mathrm{y}-20$
$100-y=y-20$
$\mathrm{y}=60 \mathrm{~km} / \mathrm{hr}$
$\mathrm{x}=60-20=40 \mathrm{~km} / \mathrm{hr}$
$\mathrm{s}=\frac{40}{2}=20 \frac{\mathrm{~km}}{\mathrm{hr}}$
Upstream speed of $Y=60-20=40 \frac{\mathrm{~km}}{\mathrm{hr}}$
So, From I \& II together we can get the answer the questions.

S56. Ans.(d)
Sol.
$\frac{144}{\sqrt[4]{?}}+\frac{24}{100} \times 125=64-10$
$\frac{144}{\sqrt[4]{7}}+30=54$
$\sqrt[4]{?}=6$
? $=1296$

S57. Ans.(a)

Sol.
$\frac{?}{100} \times 250+64=216-2$
$2.5 \times$? $=150$
? $=60$

S58. Ans.(c)

Sol.
$28 \times ?+\frac{13}{100} \times 2000=484$
$28 \times ?=484-260$
$28 \times ?=224$
? $=8$

S59. Ans.(b)

Sol.

$648+?^{4}=961-\frac{19}{100} \times 300$
$648+?^{4}=904$
$?^{4}=256$
? $=4$

S60. Ans.(a)
Sol.
$\frac{32}{100} \times ?+324=\frac{76}{100} \times 500$
$\frac{32}{100} \times ?=380-324$
$\frac{32}{100} \times ?=56$
? $=175$

S61. Ans.(c)

Sol.
Unsold bikes of company-C in 2017 \& 2018
together $=[(2500-2000)+(4000-3600)]$
$=500+400$
$=900$
Unsold bikes of company - E in 2017 \& 2018
together $=[(3000-2500)+(4000-3000)]$
$=500+1000$
$=1500$
Required $\%=\frac{1500-900}{1500} \times 100$
$=\frac{600}{15} \%$
$=40 \%$

S62. Ans.(a)

Sol.
Sold bikes of company- B \& E together in $2017=3500+2500=6000$
Sold bikes of company - A \& D together in
$2018=6500+4700$
$=11200$
Required ratio $=\frac{6000}{11200}$
$=15: 28$

S63. Ans.(e)

Sol.
Unsold bikes of company - A \& E together in $2018=[(8000-6500)+(4000-3000)]$
$=1500+1000$
$=2500$
Required $\%=\frac{2500}{(6000+4000)} \times 100$
$=\frac{2500}{10000} \times 100$
$=25 \%$

S64. Ans.(d)

Sol.

Average number of unsold bikes of company - A, C \& E in 2017
$=\frac{1}{3}[(5000-4200)+(2500-2000)+(3000-2500)]$
$=\frac{1}{3}[800+500+500]$
$=600$
Average number of sold bikes of company

- B, C \& E in 2018
$=\frac{1}{3}[4800+3600+3000]=3800$

TEST SERIES

IBPS 2021 RRB PO

 PRIMERequired difference $=3800-600=3200$

S65. Ans.(b)

Sol.
Required $\%=\frac{4800+3000}{5000+7000} \times 100$
$=\frac{7800}{12000} \times 100$
= 65\%

S66. Ans.(b)

Sol.

Let additional quantity of milk \& water added in vessel ' Q ' be 2 q \& 3 q respectively
Total milk in vessel ' Q ' $=36 \times \frac{7}{9}+2 q=(28+2 q)$ liters
Total water in vessel ' Q ' $=36 \times \frac{2}{9}+3 q=(8+2 q)$ liters
ATQ-
$\frac{(28+2 q)}{(8+3 q)}=\frac{20}{13}$
$364+26 \mathrm{q}=160+60 \mathrm{q}$
$34 \mathrm{q}=204$
$\mathrm{q}=6$ liters
additional milk added $=2 \times 6=12$ liters

S67. Ans.(c)

Sol.
Let four years ago age of Neeraj $=2$ a
So, age of Veer $=a+6$
ATQ -
$(2 a+12)+(a+18)=84$
$3 \mathrm{a}=54$
$\mathrm{a}=18$ years
Age of Veer $=(18+10)=28$ years
Age of Neeraj $=2 \times 18+4=40$ years
Required ratio $=28: 40=7: 10$

S68. Ans.(c)

Sol.
$\frac{30 a}{100}=720 \times \frac{40}{100}$
$a=960$
$\frac{15 b}{100}=1080 \times \frac{25}{100}$
$\mathrm{b}=1800$
$(960+1800) \times \frac{40}{100}=\frac{4 c}{5}$
$\mathrm{c}=1380$
20% of $(a+c-b)=(960+1380-1800) \times \frac{20}{100}=108$

S69. Ans.(b)

Sol.
Let length of train be ' L ' meters
ATQ -
$(144+18) \times \frac{5}{18}=\frac{L}{8}$
$\mathrm{L}=360$ meters
Length of platform $=360+360 \times \frac{2}{3}=600$ meters
Let train takes ' t ' sec to cross the platform
$144 \times \frac{5}{18}=\frac{360+600}{t}$
$40 \mathrm{t}=960$
$\mathrm{t}=24 \mathrm{sec}$

S70. Ans.(b)

Sol.
Let speed of boat in still water and speed of stream be $2 \mathrm{a} \mathrm{km} / \mathrm{hr}$ \& a $\mathrm{km} / \mathrm{hr}$ respectively
ATQ -
$(2 a+a)-(2 a-a)=8$
$2 a=8$
$\mathrm{a}=4 \mathrm{~km} / \mathrm{hr}$
Downstream speed $=(2 \times 4+4)=12 \mathrm{~km} / \mathrm{hr}$
Upstream speed $=(2 \times 4-4)=4 \mathrm{~km} / \mathrm{hr}$
Required time $=\frac{48}{12}+\frac{32}{4}=12$ hours

S71. Ans.(a)

Sol.
Required ratio $=\frac{1240+720}{600+480}$
$=\frac{1960}{1080}$
$=49: 27$

S72. Ans.(c)

Sol.

Female employees in company
$-\mathrm{A} \& \mathrm{C}$ together $=[(1240-640)+(880-480)]$
$=600+400$
$=1000$
Required $\%=\frac{(1000+600)-1000}{(1000+600)} \times 100$
$=\frac{600}{1600} \times 100$
$=37.5 \%$

S73. Ans.(d)

Sol.
Required $\%=\frac{(720+880)}{(640+280+480+600)} \times 100$
$=\frac{1600}{2000} \times 100$
$=80 \%$

S74. Ans.(d)

Sol. Female employees in company - B, D \& F together
$=[(720-280)+(1000-600)+(480-280)]$
$=440+400+200$
$=1040$
Male employees in company - A, C \& E together $=640+480+200=1320$
Required difference $=1320-1040$
$=280$

S75. Ans.(c)

Sol.

Average number of male employees in
company - C \& F $=\frac{480+280}{2}=380$
Female employees in company - D \& E together
$=[(1000-600)+(600-200)]$
$=400+400$
$=800$
Required difference $=800-380$
$=420$

S76. Ans.(a)

Sol.
I. $x^{2}-11 x+30=0$
$x^{2}-6 x-5 x+30=0$
$x(x-6)-5(x-6)=0$
$(x-6)(x-5)=0$
$x=5,6$
II. $y^{2}-15 y+56=0$
$y^{2}-8 y-7 y+56=0$
$y(y-8)-7(y-8)=0$
$(y-8)(y-7)=0$
$y=7,8$
So, $x<y$.

S77. Ans.(e)

Sol.

I. $21 x^{2}+43 x+20=0$
$21 x^{2}+28 x+15 x+20=0$
$7 x(3 x+4)+5(3 x+4)=0$
$(3 x+4)(7 x+5)=0$
$x=-\frac{4}{3},-\frac{5}{7}$
II. $7 y^{2}+19 y+10=0$
$7 y^{2}+14 y+5 y+10=0$
$7 y(y+2)+5(y+2)=0$
$(y+2)(7 y+5)=0$
$y=-2,-\frac{5}{7}$
So, no relation.

S78. Ans.(a)

Sol.

I. $x^{2}+12 x+35=0$
$x^{2}+7 x+5 x+35=0$
$x(x+7)+5(x+7)=0$
$(x+7)(x+5)=0$
$x=-5,-7$
II. $2 y^{2}+13 y+18=0$
$2 \mathrm{y}^{2}+9 \mathrm{y}+4 \mathrm{y}+18=0$
$y(2 y+9)+2(2 y+9)=0$
$(2 y+9)(y+2)=0$
$y=-2,-\frac{9}{2}$
So, $x<y$

S79. Ans.(d)

Sol.

I. $35 x^{2}-82 x+48=0$
$35 x^{2}-42 x-40 x+48=0$
$7 x(5 x-6)-8(5 x-6)=0$
$(5 x-6)(7 x-8)=0$
$x=\frac{6}{5}, \frac{8}{7}$
II. $28 y^{2}-53 y+24=0$
$28 y^{2}-32 y-21 y+24=0$
$4 y(7 y-8)-3(7 y-8)=0$
$(7 y-8)(4 y-3)=0$
$y=\frac{8}{7}, \frac{3}{4}$
So, $x \geq y$.

S80. Ans.(e)

Sol.

I. $15 x^{2}-22 x+8=0$
$15 x^{2}-12 x-10 x+8=0$
$3 x(5 x-4)-2(5 x-4)=0$
$(5 x-4)(3 x-2)=0$
$x=\frac{2}{3}, \frac{4}{5}$
II. $20 y^{2}-43 y+21=0$
$20 y^{2}-28 y-15 y+21=0$
$4 y(5 y-7)-3(5 y-7)=0$
$(5 y-7)(4 y-3)=0$
$y=\frac{3}{4}, \frac{7}{5}$

So, no relation.

adda
 publications

BODKS

Visit: publications.adda247.com \& store.adda247.com
For any information, mail us at publications@adda247.com

