11. FLORICULTURE AND LANDSCAPING

Unit 1. BREEDING

Principles -- Evolution of varieties, origin, distribution, genetic resources, genetic divergence- Patents and Plant Variety Protection in India; Genetic inheritance -- of flower colour, doubleness, flower size, fragrance, post harvest life; Breeding methods suitable for sexually and asexually propagated flower crops and ornamental plants-introduction, selection, domestication, polyploid and mutation breeding for varietal development, Role of heterosis, Production of hybrids, Male sterility, incompatibility problems, seed production of flower crops; Breeding constraints and achievements made in commercial flowers - rose, jasmine, chrysanthemum, marigold, tuberose, crossandra, carnation, dahlia, gerbera, gladioli, orchids, anthurium, aster, heliconia, liliums, nerium; Breeding constraints and achievements made in ornamental plants - petunia, hibiscus, bougainvillea, Flowering annuals (zinnia, cosmos, dianthus, snap dragon, pansy) and ornamental foliages- Introduction and selection of plants for waterscaping and xeriscaping.

Unit 2. PRODUCTION TECHNOLOGY OF CUT FLOWERS:

Scope of cut flowers in global trade, Global Scenario of cut flower production, Varietal wealth and diversity, area under cut flowers and production problems in India- Patent rights, nursery management, media for nursery, special nursery practices; Growing environment, open cultivation, protected cultivation, soil requirements, artificial growing media, soil decontamination techniques, planting methods, influence of environmental parameters, light, temperature, moisture, humidity and CO2 on growth and flowering; Flower production - water and nutrient management, fustigation, weed management, rationing, training and pruning, disbudding, special horticultural practices, use of growth regulators, physiological disorders and remedies, IPM and IDM, production for exhibition purposes; Flower forcing and year round flowering through physiological interventions, chemical regulation, environmental manipulation; Cut flower standards and grades, harvest indices, harvesting techniques, post-harvest handling, Pre-cooling, pulsing, packing, Storage & transportation, marketing, export potential, institutional support, Agra Export Zones; Crops: Cut rose, cut chrysanthemum, carnation, gerbera, gladioli, tuberose, orchids, anthodium, aster, lilies, bird of paradise, helicon, alstroemeria, alpinia, ornamental ginger, bromeliads, dahlia, gypsophilla, limonium, statice, stock, cut foliages.

Unit 3. PRODUCTION TECHNOLOGY FOR LOOSE FLOWERS

Scope of loose flower trade, Significance in the domestic market/export, Varietal wealth and diversity, propagation, sexual and asexual propagation methods, propagation in mist chambers, nursery management, pro-tray nursery under shadenets, transplanting techniques; Soil and climate requirements, field preparation, systems of planting, precision farming techniques; Water and nutrient management, weed management, rationing, training and pruning, pinching and disbudding, special horticultural practices, use of growth regulators, physiological disorders and remedies, IPM and IDM; Flower forcing and year round flowering, production for special occasions through physiological interventions, chemical regulation; Harvest indices, harvesting techniques, post-harvest handling and grading, packing and storage, value addition, concrete and essential oil extraction, trasportation and marketing, export potential, institutional support, Agri Export Zones: Crops- Jasmine, scented rose, chrysanthemum, marigold, tuberose, crossandra, nerium, hibiscus, barleria, celosia, gomphrena, non-traditional flowers (Nyctanthes, Tabernaemontana, ixora, lotus, lilies, tecoma, champaka, pandanus).

Unit 4. LANDSCAPING

Landscape designs, Styles of garden, formal, informal and free style gardens, types of gardens, English, Mughal, Japanese, Persian, Spanish, Italian, Vanams, Buddha garden; Urban landscaping, Landscaping for specific situations, institutions, industries, residents, hospitals, roadsides, traffic islands, damsites, IT parks, corporates; Garden plant components, arboretum, shrubbery, fernery, palmatum, arches and pergolas, edges and hedges, climbers and creepers, cacti and succulents, herbs, annuals, flower borders and beds, ground covers, carpet beds, bamboo groves; Production technology for selected ornamental plants; Lawns, Establishment and maintenance, special types of gardens, vertical garden, roof garden, bog garden, sunken garden, rock garden, clock garden, colour wheels, temple garden, sacred groves; Bio-aesthetic planning, eco-tourism, theme parks, indoor gardening, therapeutic gardening, non-plant components, water scaping, xeriscaping, hardscaping;

UNIT 5. PROTECTED FLORICULTURE

Prospects of protected floriculture in India; Types of protected structures – Greenhouses, polyhouses, shade houses, rain shelters etc., Designing and erection of protected structures; Low cost/Medium cost/High cost structures – economics of cultivation; Location specific designs; Structural components; Suitable flower crops for protected cultivation; Environment control – management and manipulation of temperature, light, humidity, air and CO2; Heating and cooling systems, ventilation, naturally ventilated greenhouses, fan and pad cooled greenhouses, light regulation; Containers and substrates, soil decontamination, layout of drip and fertigation system, water and nutrient management, weed management, physiological disorders, IPM and IDM; Crop regulation by chemical methods and special horticultural practices (pinching, disbudding, deshooting, deblossoming, etc.); Staking and netting, Photoperiod regulation; Harvest indices, harvesting techniques, post-harvest handling techniques, Precooling, sorting, grading, packing, storage, quality standards.

Unit 6. VALUE ADDITION

Prospects of value addition, National and global scenario, production and exports, Women empowerment through value added products making, supply chain management;

Types of value added products, value addition in loose flowers, garlands, veni, floats, floral decorations, value addition in cut flowers, flower arrangement, styles, Ikebana, morebana, free style, bouquets, button-holes, flower baskets, corsages, floral wreaths, garlands, etc.; Selection of containers and accessories for floral products and decorations;

Dry flowers- Identification and selection of flowers and plant parts; Raw material procurement, preservation and storage; Techniques in dry flower making - Drying, bleaching, dyeing, embedding, pressing; Accessories; Designing and arrangement - dry flower baskets, bouquets, pot-pourri, wall hangings, button holes, greeting cards, wreaths; Packing and storage; Concrete and essential oils; Selection of species and varieties (including non-conventional species), extraction methods, Packing and storage, Selection of species and varieties, Types of pigments, carotenoids, anthocyanin, chlorophyll, betalains; Significance of natural pigments, Extraction methods; Applications.

Unit 7. TURFING AND TURF MANAGEMENT

Prospects of landscape industry; History of landscape gardening, site selection, basic requirements, site evaluation, concepts of physical, chemical and biological properties of soil pertaining to turf grass establishment; Turf grasses - Types, species, varieties, hybrids; Selection of grasses for different locations; Grouping according to climatic requirement-Adaptation; Turfing for roof gardens; Preparatory operations; Growing media used for turf grasses - Turf establishment methods, seeding, sprigging/dibbling, plugging, sodding/turfing, turf plastering, hydro-seeding, astro-turfing; Turf management – Irrigation, nutrition, special practices, aerating, rolling, soil top dressing, use of turf growth regulators (TGRs) and micronutrients, Turf mowing --mowing equipments, techniques to minimize wear and compaction, weed control, biotic and abiotic stress management in turfs; Establishment and maintenance of turfs for playgrounds, viz. golf, football, hockey, cricket, tennis, rugby, etc.

Unit 8. Computer Aided Designing (CAD) FOR OUTDOOR AND INDOORSCAPING Exposure to CAD (Computer Aided Designing) - Applications of CAD in landscape garden designing, 2D drawing by AUTOCAD, 3D drawing by ARCHICAD, 3D drawing by 3D MAX software, Creating legends for plant and non-plant components, Basics of Photoshop software in garden designing; 2D drawing methods, AUTOCAD Basics, Coordinate systems in AUTOCAD LT 2007, Point picking methods, Toolbars and Icons, File handling functions, Modifying tools, Modifying comments, Isometric drawings, Drafting objects; Using patterns in AUTOCAD drawing, Dimension concepts, Hyperlinking, Script making, Using productivity tools, e-transmit file, making sample drawing for outdoor and indoor garden by AUTOCAD 2D Drawing techniques, Drawing web format design, Making layout; 3D drawing methods, ARCHICAD file system, Tools and Infobox, modification tools, structural elements, GDL objects (Grid Dimensional Linking), Creation of garden components through ARCHICAD; ARCHICAD organization tools, Dimensioning and detailing of designs, Attribute settings of components, Visualization tools for landscape preview, Data management, plotting and accessories for designing, Inserting picture using Photoshop, Making sample drawing for outdoor and indoor gardens.

12. FRUIT SCIENCE

Unit 1. TROPICAL AND DRY LAND FRUIT PRODUCTION

Commercial varieties of regional, national and international importance, ecophysiological requirements, recent trends in propagation, rootstock influence, planting systems, cropping systems, root zone and canopy management, nutrient management, water management, fertigation, role of bioregulators, abiotic factors limiting fruit production, physiology of flowering, pollination fruit set and development, honeybees in cross pollination, physiological disorders- causes and remedies, quality improvement by management practices; maturity indices, harvesting, grading, packing, storage and ripening techniques; industrial and export potential, Agri. Export Zones(AEZ) and industrial supports.

Crops: Mango and Banana, Citrus and Papaya, Guava, Sapota and Jackfruit, Pineapple, Annonas and Avocado, Aonla, Pomegranate and Ber, minor fruits of tropics.

Unit 2. SUBTROPICAL AND TEMPERATE FRUIT PRODUCTION

Commercial varieties of regional, national and international importance, ecophysiological requirements, recent trends in propagation, rootstock influence, planting systems, cropping systems, root zone and canopy management, nutrient management, water management, fertigation, bioregulation, abiotic factors limiting fruit production, physiology of flowering, fruit set and development, abiotic factors limiting production, physiological disorders-causes and remedies, quality improvement by management practices; maturity indices, harvesting, grading, packing, precooling, storage, transportation and ripening techniques; industrial and export potential, Agri Export Zones(AEZ) and industrial support. Crops: Apple, pear, quince, grapes, Plums, peach, apricot, cherries, Litchi, loquat, persimmon, kiwifruit, strawberry, Nutswalnut, almond, pistachio, pecan, hazelnut, Minor fruits- mangosteen, carambola, bael, wood apple, fig, jamun, rambutan, pomegranate.

Unit 3. BIODIVERSITY AND CONSERVATION

Biodiversity and conservation; issues and goals, centers of origin of cultivated fruits; primary and secondary centers of genetic diversity; Present status of gene centers; exploration and collection of germplasm; conservation of genetic resources – conservation in situ and ex situ. Germplasm conservation- problem of recalcitrancy – cold storage of scions, tissue culture, cryopreservation, pollen and seed storage; inventory of germplasm, introduction of germplasm, plant quarantine; Intellectual property rights, regulatory horticulture. Detection of genetic constitution of germplasm and maintenance of core group; GIS and documentation of local biodiversity, Geographical indication.

Crops: Mango, sapota, citrus, guava, banana, papaya, grapes, jackfruit, custard, apple, ber, aonla, malus, *Prunus* sp, litchi, nuts, coffee, tea, rubber, cashew, coconut, cocoa, palmyrah, arecanut, oil palm and betelvine.

Unit 4. CANOPY MANAGEMENT IN FRUIT CROPS

Canopy management - importance and advantages; factors affecting canopy development; Canopy types and structures with special emphasis on geometry of planting, canopy manipulation for optimum utilization of light. Light interception and distribution in different types of tree canopies; Spacing and utilization of land area - Canopy classification; Canopy management through rootstock and scion; Canopy management through plant growth inhibitors, training and pruning and management practices; Canopy development and management in relation to growth, flowering,

fruiting and fruit quality in temperate fruits, grapes, passion fruits, mango, sapota, guava, citrus and ber.

Unit 5. BREEDING OF FRUIT CROPS

Origin and distribution, taxonomical status – species and cultivars, cytogenetics, genetic resources, blossom biology, breeding systems, breeding objectives, ideotypes, approaches for crop improvement – introduction, selection, hybridization, mutation breeding, polyploid breeding, rootstock breeding, improvement of quality traits, resistance breeding for biotic and abiotic stresses, biotechnological interventions, achievements and future thrust in the following selected fruit crops.

Crops: Mango, banana and pineapple, Citrus, grapes, guava and sapota, Jackfruit, papaya, custard apple, aonla, avocado and ber, Mangosteen, litchi, jamun, phalsa, mulberry, raspberry, kokam and nuts, Apple, pear, plums, peach, apricot, cherries and strawberry.

Unit 6. POST HARVEST TECHNOLOGY

Maturity indices, harvesting practices for specific market requirements, influence of pre-harvest practices, enzymatic and textural changes, respiration, transpiration; Physiology and biochemistry of fruit ripening, ethylene evolution and ethylene management, factors leading to post-harvest loss, pre-cooling; Treatments prior to shipment, viz., chlorination, waxing, chemicals, biocontrol agents and natural plant products. Methods of storage- ventilated, refrigerated, MAS, CA storage, physical injuries and disorders; Packing methods and transport, principles and methods of preservation, food processing, canning, fruit juices, beverages, pickles, jam, jellies, candies; Dried and dehydrated products, nutritionally enriched products, fermented fruit beverages, packaging technology, processing waste management, food safety standards.

Unit 7. GROWTH AND DEVELOPMENT

Growth and development- definition, parameters of growth and development, growth dynamics, morphogenesis; Annual, semi-perennial and perennial horticultural crops, environmental impact on growth and development, effect of light, photosynthesis and photoperiodism vernalisation, effect of temperature, heat units, thermoperiodism; Assimilate partitioning during growth and development, influence of water and mineral nutrition during growth and development, biosynthesis of auxins, gibberellins, cytokinins, abscissic acid, ethylene, brasssinosteroids, growth inhibitors, morphactins, role of plant growth promoters and inhibitors; Developmental physiology and biochemistry during dormancy, bud break, juvenility, vegetative to reproductive interphase, flowering, pollination, fertilization and fruit set, fruit drop, fruit growth, ripening and seed development; Growth and developmental process during stress manipulation of growth and development, impact of pruning and training, chemical manipulations in horticultural crops, molecular and genetic approaches in plant growth development.

Unit 8. BIOTECHNOLOGY OF FRUIT CROPS

Harnessing bio-technology in horticultural crops, influence of plant materials, physical, chemical factors and growth regulators on growth and development of plant cell, tissue and organ culture; Callus culture - types, cell division, differentiation, morphogenesis, organogenesis, embryogenesis; Use of bioreactors and *in vitro* methods for production of secondary metabolites, suspension culture, nutrition of tissues and cells, regeneration of tissues, ex vitro, establishment of tissue cultured plants; Physiology of hardening - hardening and field transfer, organ culture - meristem, embryo, anther, ovule culture, embryo rescue, somaclonal variation, protoplast culture and fusion; Construction and identification of somatic hybrids and

cybrids, wide hybridization, in vitro pollination and fertilization, haploids, in vitro mutation, artificial seeds, cryopreservation, rapid clonal propagation, genetic engineering and transformation in horticulture crops, use of molecular markers. In vitro selection for biotic and abiotic stress, achievements of biotechnology in horticultural crops.

Unit 9. PROTECTED FRUIT CULTURE

Greenhouse – World scenario, Indian situation: present and future, Different agroclimatic zones in India, Environmental factors and their effects on plant growth; Basics of greenhouse design, different types of structures – glasshouse, shade net, poly tunnels - Design and development of low cost greenhouse structures; Interaction of light, temperature, humidity, CO₂, water on crop regulation - Greenhouse heating, cooling, ventilation and shading; Types of ventilation- Forced cooling techniques - Glazing materials - Micro irrigation and Fertigation; Automated greenhouses, microcontrollers, waste water recycling, Management of pest and diseases – IPM.

13. SPICES, PLANTATION, MEDICINAL & AROMATIC PLANTS

Unit 1. PRODUCTION OF PLANTATION CROPS

Role of plantation crops in national economy, export potential, IPR issues, clean development mechanism, classification and varietal wealth. Plant multiplication including in vitro multiplication, systems of cultivation, multitier cropping, photosynthetic efficiencies of crops at different tiers, rainfall, humidity, temperature, light and soil pH on crop growth and productivity, high density planting, nutritional requirements, physiological disorders, role of growth regulators and macro and micro nutrients, water requirements, fertigation, moisture conservation, shade regulation, weed management, training and pruning, crop regulation, maturity indices, harvesting. Cost benefit analysis, organic farming, management of drought, precision farming. Crops: Coffee and tea, Cashew and cocoa, Rubber, palmyrah and oil palm, Coconut and arecanu, Wattle and betel vine.

Unit 2. PRODUCTION TECHNOLOGY OF SPICE CROPS

Introduction, importance of spice crops-historical accent, present status - national and international, future prospects, botany and taxonomy, climatic and soil requirements, commercial varieties/hybrids, site selection, layout, sowing/planting times and methods, seed rate and seed treatment, nutritional and irrigation requirements, intercropping, mixed cropping, intercultural operations, weed control, mulching, physiological disorders, harvesting, post harvest management, plant protection measures and seed planting material and micropropagation, precision farming, organic resource management, organic certification, quality control, pharmaceutical significance and protected cultivation of: Black pepper, cardamom, Clove, cinnamon and nutmeg, allspice, Turmeric, ginger and garlie, Coriander, fenugreek, cumin, fennel, ajowain, dill, celery, Tamarind, garcinia and vanilla.

Unit 3. AGRONOMY OF MEDICINAL, AROMATIC AND UNDER-UTILIZED CROPS

Importance of medicinal and aromatic plants in human health, national economy and related industries, classification of medicinal and aromatic plants according to botanical characteristics and their uses, export potential and indigenous technical knowledge; Climate and soil requirements; cultural practices; yield and important constituents of medicinal plants (Mulhati, Isabgol, Rauwolfia, Poppy, Aloe vera, Satavar, Stevia, Safed Musli, Kalmegh, Asaphoetida, Nux vomica, Rosadle etc); Climate and soil requirements; cultural practices; yield and important constituents of aromatic plants (Citronella, Palmarosa, Mentha, Basil, Lemon grass, Rose, Patchouli, Geranium); Climate and soil requirements; cultural practices; yield of under-utilized crops (Fenugreek, Grain Amaranth, Coffee, Tea and Tobacco); Post harvest handling -drawing, processing, grading, packing and storage, value addition and quality standards in herbal products.

Unit 4. BREEDING OF PLANTATION CROPS AND SPICES

Species and cultivars, cytogenetics, survey, collection, conservation and evaluation, blossom biology, breeding objectives, approaches for crop improvement, introduction, selection, hybridization, mutation breeding, polyploid breeding, improvement of quality traits, resistance breeding for biotic and abiotic stresses, molecular aided breeding and biotechnological approaches, marker-assisted selection, bioinformatics, IPR issues, achievements and future thrusts. Crops: Coffee, tea, cashew, cocoa, rubber, palmyrah palm, oil palm, coconut, arecanut, black pepper, cardamom, Ginger, turmeric, fenugreek, coriander, fennel, celery, carom (ajwain), nutmeg, cinnamon, clove and allspice.

unit 5. BREEDING OF MEDICINAL AND AROMATIC CROPS

Plant bio-diversity, conservation of germplasm, IPR issues. Major objectives of breeding of Medicinal and Aromatic Crops, Scope for introduction; cytogenetic background of important Medicinal and Aromatic Crops; Scope for improvement of Medicinal and Aromatic Crops through selection, intra and interspecific hybridization, induced autotetraploidy, mutation breeding and biotechnological approaches; Breeding for yield and quality improvement in medicinal plants. Breeding for high herbage yield, essential oil and quality components, secondary metabolites in medicinal and aromatic crops; Genetics of active principles and assay techniques useful in evaluation of breeder's material. Breeding problems in seed and vegetatively propagated medicinal and aromatic crops; Achievements and prospects in breeding of medicinal crops, viz. Cassia angustifolia, Catharanthus roseus, Gloriosa superba, Coleus forskohlii, Stevia, Withania somnifera, Papaver somniferum, Plantago ovata, Dioscorea sp; Prospects in breeding of medicinal crops, viz. Chlorophytum sp. Rauvolfia serpentina, Aloe vera, Ocimum sp, Phyllanthus amarus, Solanum s; Prospects in breeding of aromatic crops viz., Geranium, vettiver, Lemon grass, Palmarosa, citronella, Rosemary, Patchouli, Eucalyptus, Artemisia and Mint.

Unit 6. PROCESSING OF PLANTATION CROPS, SPICES, MEDICINAL AND AROMATIC PLANTS

Commercial uses of spices and plantation crops. Processing of major spices - cardamom, black pepper, ginger, turmeric, chilli and paprika, vanilla, cinnamon, clove, nutmeg, allspice, coriander, fenugreek, curry leaf. Extraction of oleoresin and essential oils; Processing of produce from plantation crops, viz. coconut, arecanut, cashewnut, oil palm, palmyrah palm, date palm, cocoa, tea, coffee and rubber; Processing of medicinal plants, viz. dioscorea, gloriosa, stevia, coleus, ashwagandha, tulsi, isabgol, safed musli, senna, aloe and catharanthus. Different methods of drying and storage. Microbial contamination of stored product. Influence of temperature and time combination on active principles; Extraction and analysis of active principles using TLC / HPLC / GC. Distillation, solvent extraction from aromatic plantsdavana, mint, rosemary, rose, citronella, lavender, jasmine, etc. Study of aroma compounds and value addition. Nano-processing technology in medicinal and aromatic plants.

Unit 7. ORGANIC SPICE AND PLANTATION CROP PRODUCTION TECHNOLOGY

IMPORTANCE, PRINCIPLES, PERSPECTIVE, CONCEPT AND COMPONENT OF ORGANIC PRODUCTION OF SPICE AND PLANTATION CROPS; ORGANIC PRODUCTION OF SPICE CROPS AND PLANTATION CROPS, VIZ. PEPPER, CARDAMOM, TURMERIC, GINGER, CUMIN, VANILLA, COCONUT, COFFEA, COCOA, TEA, ARECANUT; MANAGING SOIL FERTILITY, PESTS AND DISEASES AND WEED PROBLEMS IN ORGANIC FARMING SYSTEM; CROP ROTATION IN ORGANIC HORTICULTURE; PROCESSING AND QUALITY CONTROL FOR ORGANIC FOODS: METHODS FOR ENHANCING SOIL FERTILITY, MULCHING, RAISING GREEN MANURE CROPS. INDIGENOUS METHODS OF COMPOST. PANCHAGAVVYA, BIODYNAMICS, PREPARATION ETC.; PEST AND DISEASE MANAGEMENT IN ORGANIC FARMING: ITK'S IN ORGANIC FARMING. ROLE OF BOTANICALS AND BIO-CONTROL AGENTS; GAP AND GMP- CERTIFICATION OF ORGANIC PRODUCTS; ORGANIC PRODUCTION AND EXPORT - OPPORTUNITY AND CHALLENGES.

14. VEGETABLE SCIENCE

Unit 1. PRODUCTION TECHNOLOGY OF COOL SEASON VEGETABLE CROPS

Introduction, botany and taxonomy, climatic and soil requirements, commercial varieties/hybrids, sowing/planting times and methods, seed rate and seed treatment, nutritional and irrigation requirements, intercultural operations, weed control, mulching, physiological disorders, harvesting, post-harvest management, plant protection measures and seed production of: Potato, Cole crops: cabbage, cauliflower, knoll kohl, sprouting broccoli, Brussels sprout, Root crops: carrot, radish, turnip, and beetroot, Bulb crops: onion and garlic, Peas and broad bean, green leafy cool season vegetables.

Unit 2. PRODUCTION TECH. OF WARM SEASON VEGETABLE CROPS

Introduction, botany and taxonomy, climatic and soil requirements, commercial varieties/hybrids, sowing/planting times and methods, seed rate and seed treatment, nutritional and irrigation requirements, intercultural operations, weed control, mulching, physiological disorders, harvesting, post harvest management, plant protection measures, economics of crop production and seed production of: Tomato, eggplant, hot and sweet peppers, Okra, beans, cowpea and cluster bean, Cucurbitaceous crops, Tapioca and sweet potato, Green leafy warm season vegetables.

Unit 3. BREEDING OF VEGETABLE CROPS

Origin, botany, taxonomy, cytogenetics, genetics, breeding objectives, breeding methods (introduction, selection, hybridization, mutation), varieties and varietal characterization, resistance breeding for biotic and abiotic stress, quality improvement, molecular marker, genomics, marker assisted breeding and QTLs, biotechnology and their use in breeding in vegetable crops-Issue of patenting, PPVFR act. Potato and tomat, Eggplant, hot pepper, sweet pepper and okra, Peas and beans, amaranth, chenopods and lettuce, Gourds, melons, pumpkins and squashes, Cabbage, cauliflower, carrot, beetroot, radish, sweet potato and tapioca.

Unit 4. GROWTH AND DEVELOPMENT

Cellular structures and their functions; definition of growth and development, growth analysis and its importance in vegetable production; Physiology of dormancy and germination of vegetable seeds, tubers and bulbs; Role of auxins, gibberellilns, cyktokinins and abscissic acid; Application of synthetic hormones, plant growth retardants and inhibitors for various purposes in vegetable crops; Role and mode of action of morphactins, antitranspirants, anti-auxin, ripening retardant and plant stimulants in vegetable crop production; Role of light, temperature and photoperiod on growth, development of underground parts, flowering and sex expression in vegetable crops; apical dominance; Physiology of fruit set, fruit development, fruit growth, flower and fruit drop; parthenocarpy in vegetable crops; phototropism, ethylene inhibitors, senescence and abscission; fruit ripening and physiological changes associated with ripening; Plant growth regulators in relation to vegetable production; morphogenesis and tissue culture techniques in vegetable crops. sex expression in cucurbits and checking flower and fruit drops and improving fruit set in Solanaceous vegetables; growth analysis techniques in vegetable crops.

Unit 5. SEED PRODUCTION

Introduction; modes of propagation in vegetables; Seed morphology and development in vegetable seeds; Floral biology of these plant species; classification of vegetable crops based on pollination and reproduction behavior; steps in quality seed production; identification of suitable areas/locations for seed production of these crops; Classification based on growth cycle and pollination behavior; methods of seed

production; comparison between different methods e.g. seed-to-seed vs. root-to-seed method in radish; seed multiplication ratios in vegetables; pollination mechanisms; sex types, ratios and expression and modification of flowering pattern in cucurbits; nursery raising and transplanting stage; Seed production technology of vegetables viz. solanaceous, cucurbitaceous, leguminous, malvaceous, Cole crops, leafy vegetables, root, tuber and bulb crops and spices; harvesting/picking stage and seed extraction in fruit vegetables; clonal propagation and multiplication in tuber crops e.g. Potato, sweet potato, colocasia, tapioca; seed-plot technique in potato tuber seed production; hybrid seed production technology of vegetable crops, TPS (true potato seed) and its production technique; hybrids in vegetables; maintenance of parental lines; use of male sterility and self incompatibility in hybrid seed production, environmental factors related to flowering/bolting in vegetable crops; Share of vegetable seeds in seed industry; importance and present status of vegetable industry; intellectual property rights and its implications, impact of PVP on growth of seed industry.

Unit 6. SYSTEMATICS OF VEGETABLE CROPS

Principles of classification; different methods of classification; salient features of international code of nomenclature of vegetable crops; Origin, history, evolution and distribution of vegetable crops, botanical description of families, genera and species covering various tropical, subtropical and temperate vegetables; Cytological level of various vegetable crops; descriptive keys for important vegetables; Importance of molecular markers in evolution of vegetable crops; molecular markers as an aid in characterization and taxonomy of vegetable crops.

Unit 7. PRODUCTION TECHNOLOGY OF UNDEREXPLOITED VEGETABLE CROPS Introduction, botany and taxonomy, climatic and soil requirements, commercial varieties/hybrids, owing/planting times and methods, seed rate and seed treatment, nutritional and irrigation requirements, intercultural operations, weed control, mulching, physiological disorders, harvesting, post harvest management, plant protection measures and seed production of: Asparagus, artichoke and leek; Brussels sprout, Chinese cabbage, broccoli, kale and artichoke; Amaranth, celery, parsley, parsnip, lettuce, rhubarb, spinach, basella, bathu (chenopods) and chekurmanis; Elephant foot yam, lima bean, winged bean, vegetable pigeon pea, jack bean and sword bean; Sweet gourd, spine gourd, pointed gourd, Oriental pickling melon and

little gourd (kundru).
Unit 8. POST HARVEST TECHNOLOGY OF VEGETABLE CROPS

Importance and scope of post harvest management of vegetables; Maturity indices and standards for different vegetables; methods of maturity determinations; biochemistry of maturity and ripening, enzymatic and textural changes, ethylene evolution and ethylene management, respiration, transpiration, regulation methods; Harvesting tools, harvesting practices for specific market requirements; post-harvest physiological and biochemical changes, disorders-chilling injury in vegetables, influence of pre-harvest practices and other factors affecting post harvest losses, packaging house operations, commodity pretreatments- chemicals, wax coating, prepackaging and irradiation; packaging of vegetables, post harvest, diseases and prevention from infestation, principles of transport; Methods and practices of storage- ventilated, refrigerated, MA, CA storage, hypobaric storage, pre-cooling and cold storage, zero energy cool chamber; storage disorders.

15. ANIMAL BIOCHEMISTRY

Scope of Biochemistry and molecular biology in animal sciences. Structural and functional organization of prokaryotic and eukaryotic cells, viruses and bacteriphages. Compartmentalization of metabolic processes within the cell and fractionation of subcellular components. Structure and functions of biomembranes with special reference to active transport of ions and metabolites. Extra and intracellular communication. General description of cell culture, hybridoma and animal cloning techniques.

Unit 2:

Structure and properties of biologically important carbohydrates including storage and mucopolysaccharides, blood group substances, polysaccharides, peptidoglycans and bacterial polysaccharides. Structure and properties of fatty acids, acyl glycerol, glycerophospholipids, sphingolipids, glycolipids, sulfolipids, aminolipids, sterols, bile acids and prostaglandins. Basic principles of isolation, estimation and analysis of carbohydrates and lipids.

Aminoacids, structure and properties. Primary, secondary, tertiary and quaternary structure of proteins. Glycoproteins, lipoproteins, nucleoproteins, fibrous and globular proteins. Structure and functions of immunoglobulins, myoglobin and hemoglobin. Physical and chemical properties of proteins. Structure of different types of nucleic acids. Acid base properties, sedimentation behaviour, hyperchromic effect, base sequencing and restriction analysis of DNA. Computer applications in molecular biology, primer designing, sequence analysis and phylogenetic analysis.

Major classes of enzymes, general proerties, kinetics and mechanism of their action. Activation energy and transition state. Coenzymes and cofactors. Regulation of enzyme activity and enzyme inhibition. Isoenzymes and enzymes of clinical significance. Applications and scope of enzymes in bioprocess technology and genetic engineering.

Unit 5:

Bioenergetics, biological oxidation, respiratory chain and oxidative phosphorylation. Citric acid cycle and ATP generation. Glycolysis, pentose phosphate pathway and glycogenesis. Biosynthesis and oxidation of fatty acids. Volatile fatty acids as source of energy in ruminants. Ketogenesis and cause of ketosis in ruminants. Biosynthesis of sterols and phospholipids. Catabolism of amino acids, transmination and determination, urea cycle. Intergration of carbohydrate, lipid and amino acid metabolism. Conversion of amino acids into other bioactive compounds. Biosynthesis of nutritionally non-essential amino acids. Metabolism of purines and pyrimidines. Disorders of lipid, carbohydrate, nucleic acid and amino acid metabolism. Inborn errors of metabolism and scope of gene therapy in combating genetic disorders.

Mechanism of storage, transmissions and expression of genetic information. DNA replication and control of gene expression in prokaryotes and eukaryotes. RNA synthesis and factors regulating transcription. Biosynthesis of proteins. Features of genetic code in prokaryotes and eukaryotes. Wobble hypothesis, post-translational

modification, degeneracy and regulation of translation. Basic principles of recombinant DNA technology and its scope in animal health and production. Recombinant proteins and vaccines, safety, ethical issues and IPRs in molecular biology.

Unit 7:

Structure and metabolic functions of water soluble and lipid soluble vitamins. Trace elements and their role in biological processes. Deficiencies and nutritional significance of vitamins and trace elements in domestic animals and poultry, neutraceuticels & probiotics. General description of nature of hormones, receptors and mechanisms of their action. Metabolic function of different hormones and associated disorders due to hypo or hyper secretions of major endocrine glands viz. pituitary, thyroid, adrenal, pancreas and gonads.

Unit 8:

Blood composition and biochemical constituents of erythrocytes, leucocytes and platelets. Important plasma proteins and their functions. Haemoglobin in oxygen and carbon dioxide transport. Role of kidneys in acid base balance. Composition and metabolism of muscle, connective, tissue, cartilage, bone, nervous, tissue, adipose tissue and mammary tissue. Clinical significance of iron, iodine calcium and phosphorus metabolism in domestic animals and poultry. Biochemical tests for hepatic and renal functions. Urine composition and analysis.

Unit 9:

Basic principles and use of latest photometric, chromatographic, eletrophoretic and redioisotopic methods of biochemical analysis. Mehods of isolation, purification and characterization of proteins, DNA and RNA. Basic principles of RIA, ELISA, PCR, RFLP and DNA fingerprinting NA probes, vectors, microarray, imaging, applications of nanotechnology, proteomics. Determination of enzymes, hormones, vitamins and other biochemical constituents with special reference to disease diagnosis in domestic animals.

Unit 10:

Environmental pollution in relation to animal health and production. Biotechnology in pollution control. Biochemical basis of pollutant tolerance, host defence mechanisms including antigenic and non-antigenic interactions. Free radicals, carcinogenesis and role of liver and kidneys in detoxification. Oncogenes and mechanism of immuno suppression in cancer therapy and organ transplantation.

16. ANIMAL BIOTECHNOLOGY

Unit 1: Cell Biology

Prokaryotic and eukaryotic cell architecture. Molecular organization and functions of cell membrane. Organisation and functions of the cytoplasm, cell organelles, endoplasmic reticulum, ribosomes, golgi complex, mitochondria, lysosomes, nucleus, nucleolus and subnuclear structures. Protein secretion and targeting. Intracellular digestion. Oxidative phosphorylation. Cell division, cell cycle, Cell growth and differentiation. Control of cell proliferation and self regulation. Cell motility. Cell trafficking and signaling. Apoptosis and molecular pathways.

Unit 2: Molecular Biology

Structure and chemical composition of nucleic acids. DNA replication in prokaryotic and eukaryotic cells. Genome organization. Structure and functions of DNA polymerases. Molecular mechanisms of DNA repair. Synthesis and processing of different types of RNA. RNA polymerases. Protein biosynthesis.

Genetics of mitochondria and plasmids. Transposons and intervening sequences. Minisatellites and microsatellites. Molecular mechanism of spontaneous and induced mutations.

Recombination in bacteria, viruses and fungi. Molecular mechanism of genetic recombination, transformation and conjugation.

Unit 3: Gene Structure and Regulation of Gene Expression

Organisation of prokaryotic and eukaryotic genome. Repeated and non-repeated DNA sequences. Structure and function of gene.

Expression of genetic information, transcription – mechanism of transcription in prokaryotes and eukaryotes, transcription unit, regulatory sequences and enhancers, transcription factors, post-transcriptional modifications. DNA-protein and protein-protein interactions.

Genetic code. Overlapping genes. Mechanism of translation and its control, post-translational modifications. Control of gene expression in prokaryotes and eukaryotes. Gene mining.

Unit 4: Genetic Engineering and Recombinant DNA Technology

Isolation and purification of DNA and RNA from prokaryotes and eukaryotes. Reverse transcription and cDNA synthesis. Restriction endonucleases, DNA and RNA modifying enzymes. Generation of DNA fragments, Cloning and expression vectors- plasmids, cosmids, phages, phagemid, shuttle vectors, BAC, YAC, MAC. Eukaryotic vectors-viral vectors (vaccinia, retro, adeno, baculo) and yeast expression system.

Cloning and expression in prokaryotic and eukaryotic hosts. DNA libraries (genomic and cDNA). Screening and characterization of DNA clones. Transformation of bacterial cells. Transfection in animal cells.

In situ mutagenesis. Site directed mutagenesis. Antibody engineering. Production of diagnostics, therapeutics and vaccines using r-DNA technology. Nano-delivery system. Genetically modified animal/fish. Genetic manipulation of gut microbes. Single cell protein. Reverse genetics. RNA interference (RNAi, siRNA, peptide nucleic acid). Gene silencing.

Genetically modified microbes for environment improvement, bioremediation, fermentation.

Safety aspects and regulations associated with recombinant DNA technology. Ethical issues related to use of biotechnology products. Patenting and Intellectual Property Rights.

Unit 5: Cell culture and Hybridoma Technology

Development and applications of cell and organ culture techniques. Nutrient requirements for cells of animal and fish origin. Media for culturing cells. Growth supplements. Primary cultures and established cell lines. Stationary, roller and suspension culture techniques. Large-scale production of cells using bioreactors, microcarriers and perfusion techniques.

Characterization and maintenance of cells, karyotyping, cryopreservation and revival. Detection of contaminants in cell cultures. Cell viability and cytotoxicity assays. Isolation and culture of lymphocytes.

Micro-manipulation of cells. Cell fusion, somatic cell hybrids, sub-cloning of cells. Principles and methods of hybridoma technology. Production and characterization of monoclonal antibodies and their applications.

Unit 6: Reproductive Biotechnology and Related Techniques

Superovulation. Embryo collection and evaluation. Embryo splitting, sexing, transfer and their applications. Semen sexing.

Cryopreservation of gamete and embryos. Synthetic hormones for induced breeding in fishes. Androgenesis, gynogenesis, triploidy and polyploidy in fishes.

In vitro/ fertilization. Embryo cloning. Nuclear transplantation. Transgenic technology. Production of transgenic animals/fish and gene farming. Gene knockout techniques. Identification and transfer of genes influencing production and disease resistance. Stem cells and their applications in animal and fish health and production.

Unit 7: Molecular Biology Techniques

Quantitation of protein and nucleic acids. Gel electrophoretic techniques. Isolation of plasmids. Molecular cloning. Nucleic acid probes. GFP from jelly fish and its applications. Nucleic acid hybridization including *in situ* hybridization and FISH techniques. Autoradiography. Blotting techniques. Nucleic acid sequencing methods including next generation sequencing (NGS). Protein purification methods. RFLP, RAPD and AFLP. DNA fingerprinting. Single Nucleotide Poymorphism (SNP). Polymerase Chain Reaction (PCR) and Real-time PCR. Microarray techniques. Biosensors. Bioinformatics in biotechnology (protein and nucleic acid data banks, sequence alignment, sequence editing, phylogenetic tree analysis using *in silico* tools).

17. ANIMAL GENETICS AND BREEDING

Unit 1: Overview of Genetics

History and development of genetics. Classic researches and pioneer scientists in genetics. Mendalism and its deviations. Chromosomes and heredity. Sex in relation to chromosomes and genes. Linkage and crossing over. Artificial transmutation of genes. Penetrance and expressivity. Multiple factor inheritance. Gene modifiers. Non-chromosomal genes and their inheritance, Chromosomal aberrations. Mosaicism and chimerism.

Unit 2: Advanced Genetics

Fine structure of chromosomes and chromosomal banding. Gene and mechanism of gene action. DNA replication. Central dogma. Protein synthesis. Genetic code and DNA cloning. Recombinant DNA technology. PCR. Gene banks. Split gene. Genetic control of hormone coordination, metabolism and metabolic diseases. Use of biotechnological tools in improving animal productivity. Application of immunogenetics. Biochemical polymorphism. Chromosomal studies in livestock improvement programmes. Development of clones in relation to animal productivity and maintaining biodiversity. Production of transgenic animals. Gene mixing for useful functions.

Unit 3: Overview of Breeding

Brief history of domestication of livestock. Important breeds of livestock & poultry with special reference to economic characters. Evolution of genetic systems. Isolating mechanisms and origin of species / sub-species, their adaptation. Mating systems for different livestock and poultry. Genetic and phenotypic consequences and applications of inbreeding and out-breeding. Genetic basis of heterosis and its use. Diallele and polyallele crossing. Reciprocal and reciprocal-recurrent-selection. Combining ability. Developments in population and production of livestock and poultry in India. Status of Animal Genetic Resources in India.

Unit 4: Genetic Properties of Population

Population Vs individual. Inheritance and continuity of population. Effective population size. Biodiversity. Description of animal population. Value and means; Average effect of gene and gene substitution. Components of total phenotypic variance of a population. Resemblances between relatives. Concept of heritability, repeatability; & phenotypic, genetic and environmental correlations. Methods of estimation, uses, possible biases and precision of estimates.

Unit 5: Population Genetics

Gene and genotypic frequencies and factors affecting them. Hardy Weinberg Law and consequences of it. Prediction of selection response by different methods. Selection for threshold characters. Indirect selection and correleated response. Theoretical basis of change of population mean and variance on inbreeding and cross breeding. Genotype – environment interaction. Metric characters under natural selection. Quantititive trait loci and their applications. Marker-assisted selection.

Unit 6: Genetic Stretegies

Purpose-wise breeding strategies for livestock and poultry under different agroclimatic zones of India. Evaluation of past genetic improvement programmes for livestock and poultry in India. Bottlenecks in implementation of livestock breeding programmes in India. Evaluation and characterization of various indigenous breeds of livestock and poultry. *Ex-situ* and *In-situ* conservation of animal and poultry genetic resources. Development of new breeds / strains for better productivity in animals. Open nucleus breeding system in livestock improvement in India. Bio-technology and its role in improving animals and poultry production. Role of artificial insemination / frozen semen / embryo transfer / ONBS / MOET technology in animal breeding.

Fromulation of breeding programmes: Purpose-wise, breed-wise, region-wise for different species of livestock and poultry. Programmes for genetic improvement of non-descript livestock population of different species. Evaluation and current recommendations of cross breeding programmes of cattle, sheep and goat in India.

Unit 7: Selection & Selection Experiments

Basis and methods of selection. Construction of selection indices. Different methods of sire evaluation. Selection differential and intensity of selection. Prediction of response. Improvement of response. Effect of selection on variance. Realised heritability. Long-term and short-term objectives of selections. Selection experiments in livestock and poultry. Role of control population in selection experiments. Selection for disease resistance and development of general and specific disease resistant strains / breeds. Purpose based selection and breeding of domestic animals and poultry. Genetic-slippage. Estimation of genetic divergence and its implications in livestock improvement programmes. Selection for better feed conversion efficiency in meat animals and poultry.

Unit 8: Genetic Laboratory Techniques

Culturing *Drosophila* stock. Study of *Drosophila* with markers. Gene sequencing. Blood group typing. Karyotyping and chromosomal mapping. Concept of recombinant DNA techniques cloning and gene mapping. Nuclic acid hybridization. Development of breed descriptors at molecular level for different livestock and poultry breeds. Biochemical polymorphism analyses – blood groups, transferrins, milk proteins. Collection and storage of samples for DNA fingerprinting; isolation and quantification of DNA from blood and semen; Restricted enzyme digestion of genome DNA, Analysis and transfer of DNA from agarose electrophoresis; Nucleic acid hybridization; Analysis of DNA fingerprinting, PCR-RFLP assay. Cryogenic preservation of animal germplasm.

Unit 9: Research Techniques for Quantitative Animal Genetics

Use of computers in handling animal breeding data. Estimation of variances and covariances. Development of statistical models for analyses of breed data and to quantify environmental variance. Estimation of inbreeding and relationship. Estimation of inbreeding rate in a closed herd / flock. Estimation and interpretation of genetic and phenotypic parameters. Development of efficient selection programmes and procedures. Estimation of genetic gains. Designing and evaluation of breeding strategies like reciprocal recurrent selection, diallele and polyallele crossing. Designing field based progeny testing programmes. Development of efficient methods and traits for genetic evaluation of males under indigenous conditions. Data bank concept.

Unit 10: Laboratory Animal Breeding

Laboratory animal species *viz* mice, rat, guinea pig, rabbit, dog and monkey – Their chromosome numbers – genome size – major genes. Physiological, nutritional, reproduction parameters, maintenance protocol – pedigree recording, planned mating. Selection and Mating methods /systems- monogamous, polygamous and others. Genetic control and monitoring-Record keeping-Ethics and legislation for management and use of laboratory animals. Nomenclature for different strains, inbred lines (SPF line, Knockout mice, etc.) – Animal model for human disease. Specific utility of different laboratory species for different requirements.

18. ANIMAL NUTRITION

Unit 1: Energy and Proteins: Nutritional significance of carbohydrates, lipids and proteins. Cell-wall fractionation. Available energy from organic nutrients. Partitioning of dietary energy. Basal metabolic rate. Energy retention. Factors affecting energy utilization. Direct and indirect calorimetry. Dietary lipids - their digestion, absorption and metabolism. Essential fatty acids. Effect of dietary fat on milk and body composition. Proteins - digestion, absorption and utilization. Comparative efficiency of amino acids as energy source. Essential and critical amino acids. Protein evaluation. Metabolizable protein concept. Protein energy inter-relationship. Energetic of protein utilization for maintenance and different productive functions.

Unit 2: Minerals, Vitamins and Feed Additives Minerals: Classification of minerals, Physiological functions, Deficiency symptoms and toxicity - Inter-relationships - Synergism and antagonism - Requirements - Different sources and bio-availability - Role of chelated minerals. Vitamins: Physiological functions and co-enzyme role - Deficiency symptoms, hyper-vitaminosis. Requirements, Sources and vitamin analogues - Antivitamins - Feed Additives: Nutritional role. Prebiotics - Probiotics, phytochemicals other metabolic modifiers. Role of phyto-chemicals as growth

promoters.

Unit 3: Rumen eco-system and functions Rumen and its environment. Development of functional rumen. Digestion kinetics in reticulo-rumen. Role of rumen microbes, Significance of rumen fungi- Defaunation and transfaunation. Microbial fermentation in rumen. VFA production, inter-conversion and utilization. Dietary protein breakdown. Microbial protein synthesis. NPN compounds and their utilization. Ammonia toxicity - Role of slow release urea compounds. Manipulation of rumen fermentation. Bio-hydrogenation and utilization of dietary lipids. Methanogenesis and methane inhibitors.

Unit 4: Non-ruminant Nutrition Comparative gastrointestinal physiology of monogastrics – digestion and metabolism of organic nutrients in poultry and swine. Significance of minerals and vitamins in mono-gastrics. Inter relationship in nutrient sparing activity. Feeding systems. Role of feed additives - Factors affecting nutritional quality and performance. Special nutritional needs of rabbits, horses and companion

animals.

Unit 5: Nutrient Requirements Energy protein requirements for maintenance and productivity in ruminants and non-ruminants. Colostrum feeding of calf, mineral and vitamin requirements. Dry matter intake in relation to productivity. DM: water intake ratio. Palatability. Nutritional intake and energy density. Feeding standards - NRC, ARC, Kearl and Indian. Nutrient requirements under temperate and tropical environment. Feeding strategies during stress and natural calamities - Ration formulation - least cost rations.

Unit 6: Forage Conservation and Evaluation Natural and cultivated forges-Their composition and nutritive values. Nutritive value Index. Forage quality evaluation in range animals -Role of indicator methods-Advances in silage and haymaking- Factors affecting quality of conserved forages- Quality criteria and grading of silage and hay

under tropics-artificial drying of forages.

Unit 7: Feed Processing and Technology Methods of feed processing - physical, chemical and biological effect of processing on nutritional quality and utilization. Pelleted and extruded feeds. Quality control of raw feedstuffs and finished feeds: Significance of BIS (standards). Handling and storage of raw and finished feeds. Methods to improve shelf life of fat rich feeds, By-products of newly introduced commercial crops including residues of genetically modified feeds. Alternative feed resources. Current approaches in enriching tropical feed resources - concept of total mixed ration and advances in complete diet formulation.

Unit 8: Anti-metabolites and Toxic Principles Naturally occurring anti-nutritional factors and common toxins in feeds and forages. Methods of detoxification. Health hazards due to residual pesticides in feeds and forages - Environmental pollutants.

Unit 9: Elements of Research Methodology Principles of animal experimentation -Experimental designs in nutritional research. Modern methods of feed evaluation - In vitro, gas production and nylon bag techniques, Rumen simulation techniques -Rusitec Tracer techniques in nutrition research - Role of NIR Spectroscopy - Feed microscopy in quality evaluation of feedstuffs.

Unit 10: Clinical Nutrition

Role of nutrition to control digestive and metabolic disorders (milk fever, ketosis, ruminal acidosis-laminitis, bloat), metabolic profile tests. Role of nutrition in immunity, nutrition and reproduction, nutrients as antioxidants. Role of nutrition in management of GI parasites.

19. ANIMAL PHYSIOLOGY

Unit 1: Cellular Basis of Animal Physiology

Animal cell ultra-structure, composition and functions. Physio-chemical laws and membrance phenomena. Body fluid and its dynamics. Transport of through biological menbrance.

Unit 2: Blood and Circulation

Composition of blood, structure & functioning of its constitutes. Blood coagulation and anti coagulants. Hemoglobin and its polymorphism. Anaemias. Sreticule-endothelial System. Body defense mechanism and immunogenesis.

Electrophysiology of heart. Electro-cardiography – Principles and interpretation. Hemodynamics and concerned biophysical principals. Capillary fluid exchange and lymphatic circulation. Neural and humoral control of heart and blood vessels. Cardiac Output and vascular reflexes. Autoregulation mechanism in the heart Regional circulation – coronary, pulmonary, cerebral, muscle, kidney and skin, blood brain barrier. Circulatiory shock and hypertension and cardiac failure.

Unit 3: Respiration

Mechanics of respiration. Neural and chemical control of respiration. Gaseous transport and exchange. Hypoxia. Physiology of hypo-barrism and high altitude. Work and exercise physiology. Respiration in birds.

Unit 4: Excretion

Modern concepts of urine formation. Control of renal circulation. Secretion and absorption in renal tubules. Regulation of acid-base balance by blood buffers, lungs and kidneys. Hormonal and renal regulation of body fluids and electrolyte balance. Physiology of micturition. Uremia and other renal disorders. Renal functions in birds.

Unit 5: Digestion

Control of motility and secretion of alimentary canal. Gastric hormones and reflexes in the control of digestive functions. Control of rumen motility. Digestion in ruminant and monogastric animals. Absorption from rumen and the digestive tract. Manipulation of rumen microflora to enhance fibre digestion and microbial protein synthesis. Nitrogen recycling and rumen bypass mechanisms. Post-ruminal digestion. Physiology of rumen disorders. Avian digestion (different features).

Unit 6: Muscle Physiology

Muscle types and their intra-cellular contractile mechanisms. Electrophysiology of muscles. Neuromuscular junction. Excitation contraction coupling, its biochemical and ionic mechanisms. Molecular basis of muscle contraction. Rigor mortis.

Unit 7: Nervous System

General organization of nervous system. Neurone structure and fuction. Excitability and transmission of impulse in neuron and muscle. Junctional transmission. Neurotransmitters. Reflex action. Initiation of impulses from sense organ / receptors. Functions of spinal cord, brain stem and cerebellum. Limbic system and cerebral cortex. Hypothalamus and its autonomic functions in endocrine and visceral regulation. Ascending and descending tracts. Cerebral cortex, its role in motor and sensory functions. Physiology of learning and memory. Physiology of pain. Special senses (hearing, vision, taste, smell etc.).

Unit 8: Endocrinology

Hormones. Hormone receptors. Mechanism of hormone action at cellular and sub cellular levels. Feedback control of hormone secretion. Hypothalamic - hypophyseal axis. It should include (i) Hypothalamic - hypophyseal axiz controlling secretions from thyroid, parathyroid, adrenal and gonals, (ii) Endocrine control of general metalbolism. Releasing and inhibiting factors.

Pineal gland and its hormones. Hormones of hypophysio and all other endocrine

glands. Mechanisms of different hormone actions. Endocrine disorders.

Unit 9: Reproduction

Gonadal hormones and their functions in male and female. Neuro-endocrine-gonadal axis and feedback regulation. Male spermatogenesis. Accessory sex glands. Sexual behaviour erection, ejaculation etc. Semen evaluation. Factors affecting reproduction. Artificial insemination - collection, preservation and transport and semen diluents. Freezing of semen. Oogenesis. Follicular development. Ovulation. Corpus lutetium. Reproductive cycles in animals. Factors affecting reproductive cycles. Female synchronization, super-ovulation. hormones. Oestrous capacitation and acrosomal reaction. Sperm and ovum transport in female genital tract. Fertilization. Implantation. Maternal recognition of pregnancy, Maintenance of pregnancy and its hormonal control. Physiology of placenta. Physiology of parturition and its hormonal control. Embryo transfer - collection, preservastion, transport and transfer of embryos. Oocytculture. In vitro fertilization. Mammary gland growth before puberty, during pregnancy and after parturition and its hormonal control. Lactation-Hormonal control of lactation and milk let-down. Maintenance and cessation of lactation. Mammary gland involution. Milk precursors and synthesis of milk constituents. Methods of studying mammary uptake of nutrients, Ultrastructure of lactating mammary gland. Milk composition in different animals. Avian reproductionovulation, egg formation, oviposition and their hormonal control. Spermatogenesis and semen composition.

Unit 10: Physiology of Growth

Concept and definition. Growth regulation and factors affection prenatal and postnatal growth. Role of growth in production. Growth curve and growth measurement, body confirmation and evaluation of carcess quality.

Unit 11: Climate Physiology

Physiology of climate stress. Effects of stress on production and reproduction. Neural and hormonal regulation of body temperature in homeotherms. Machanism of adaptation. Photoperiodicity and biological rhythms. Design of shelters / animal houses for different class of livestock for different climate conditions.

Unit 12: Behavioral Physiology Different types of behaviour in animals like feeding, grazing, drinking and thermoregulatory behaviour, neuro-endocrine control of behaviour in livestock.

20. ANIMAL REPRODUCTION AND GYNAECOLOGY

Unit 1: Veterinary Gynaecology

Biology of sex. Development of female genitalia. Functional anatomy of female reproductive system of farm animals. Growth, puberty and sexual maturity. Reproductive cycles (oestrous cycle) in female farm animals. Oogenesis and folliculogenesis. Follicular dynamics and ovulation. Transport and survival of gametes, fertilization, cleavage, implantation and maternal recognition of pregnancy. Development of foetus and foetal membranes. Placenta- classification and functions. Gestation and pregnancy diagnosis in farm animals.

Unit 2: Reproductive Endocrinology

Reproductive hormones, classification, synthesis, chemical composition and mechanism of action. Hypothalamus, pituitary, thyroid, gonadotropic, gonadal, placental and pineal gland hormones. Prostaglandins, pheromones, growth factors and hormone antagonists and their significance in animal reproduction. Hormonal assays. Hormonal regulation of male and female reproduction. Clinical uses of hormones.

Unit 3: Accidents during Gestation

Pregnancy, Pseudocyesis, Ectopic pregnancy, Abnormalities of fertilization and foetal development, Superfecundation and superfetation. Abortion - bacterial, viral, mycotic, protozoal, physical, toxic and miscellaneous causes, diagnosis and prevention, Dropsy of foetal membrane and foetus, Maceration, mummification, Pyometra, Antepartum vagino-cervical prolapse, Uterine torsion and displacement of uterus.

Unit 4: Veterinary Obstetrics

Pelvis and pelvimetry. Parturition - Signs approaching parturition, initiation and stages of parturition, induction of parturition and postpartum period. Presentation, position and posture. Causes and forms of dystocia and its treatment. Epidural anaestheia. Obstetrical maneuvers including fetotomy and Caesarean section. Postpartum complications in domestic animals, retention of placenta, uterine proplapse, endometritis, metritis, septic metritis. Post parturient metabolic disorders.

Unit 5: Andrology

Comparative anatomy of male reproductive system. Thermoregulation of testis and blood testis barrier, Growth, puberty and sexual maturity. Spermatogenesis including cycle of somniferous epithelium and spermatogenic wave. Sperm morphology and ultra-structure of spermatozoa, sperm transport, maturation and storage in male genital tract, Secretions of male reproductive tract including accessory glands and their role in reproduction, Sexual / mating behaviour. Semen and its composition, biochemistry of semen and sperm metabolism, sperm abnormalities and its classification, sperm separation and spermatozoa karyotyping.

Unit 6: Male Infertility

Fertility, infertility and sterility in male domestic animals. Causes and forms of male infertility. Testicular hypoplasia, cryptorchid, testicular degeneration, orchitis, affections of epididymis, vas deference, penis, prepuce and accessory glands & their management, tumors of the male reproductive tract, nutritional infertility, Vices in the males.

Evaluation of male for breeding soundness, reproductive health status. Effect of parental drugs and vaccines on semen quality.

Unit 7: Frozen Semen Technology and Artificial Insemination

History and development of artificial insemination. Advantages and disadvantages of AI and frozen semen, selection of bulls for AI purpose. Management of breeding bulls, methods of semen collection in different domestic animals, semen evaluation including latest techniques for evaluation of motility and fertilization.

Ideal extenders, extenders for liquid semen. Preservation of semen at various temperatures. Processing and preservation of liquid semen. Extenders for frozen semen, principles and techniques of semen freezing. Cold shock and ultra-low temperature shock. Cryoprotectants. Semen additives. Evaluation of frozen semen. Transport and storage semen. Handling of frozen semen, Liquid nitrogen and its containers. Insemination techniques. Planning and organization of semen bank.

Unit 8: Reproductive Technology

Synchronization of oestrous cycle in domestic animals, control of ovulation. Embryo transfer technology – History, advantages and disadvantages, superovulation, collection, evaluation, preservation and transfer of oocytes / embryos.

History of *in vitro* maturation and fertilization. Recovery of oocytes *in vitro* and *in vivo*, maturation, fertilization, culture, evaluation, preservation and transfer of oocytes / embryos. Micromanipulation of embryos. Embryo splitting and cloning. Stem cells and production of transgenic animals. Sex determination and gene insertion. Establishment of laboratory for ETT, IVM, IVF and IVC.

Use of Ultrasonography, laparoscopy and ovum-pick technology in farm animals.

Unit 9: Infertility in Cows and Buffaloes

Fertility, infertility and sterility. Evaluation of herd fertility. Incidence and economic role of infertility, forms of infertility, congenital and hereditary defects, infectious diseases. Pathological conditions of ovary, oviduct, uterus, cervix and vulva. Management causes of infertility. Hormonal causes of infertility, anestrus, repeat breeding, cystic ovarian degeneration, sexual health control and reproductive health programmes. Breeding soundness examination of cows and buffaloes.

Unit 10: Reproduction and Infertility in Ovine / Caprine

Puberty, sexual maturity, breeding season, oestrous cycle, Breeding and conception, gestation, parturition, peri-parturient and obstetrical complications. Synchronization of oestrous cycle. Embryo transfer. Causes of infertility and their management.

Unit 11: Reproduction and Infertility in Swine

Estrous cycle, synchronication of oestrous cycle, Hormonal control of reproduction. Various forms of infertility in swine and their management. Various obstetrical problems and their management.

Unit 12: Equine Reproduction

Physiology and pathology of equine reproduction. Research techniques and methodology for the study of equine reproduction. Equine andrology. Reproductive behaviour and management of stallion. Semen collection, examination and artificial insemination. Pregnant mare behaviour. Application of modern reproductive techniques in equine reproduction. Equine infertility.

Unit 13: Canine and Feline Reproduction

Functional anatomy of dog and cat reproductive system, bestrous cycle and endocrinology of bestrous cycle and detection of optimum breeding time. Exfoliative vaginal cytology. Methods of pregnancy diagnosis, contraception. Medical termination of pregnancy. Infertility in bitches, disorders of bestrous cycle, psedopregnancy, pyometra, cystic endoretrial hyperplasia, tumors of reproductive tract. Difficult

whelping – types and methods of handling dystocia. Caesarean section. Ovarian hysterectomy. Peri-partutrient complications. Semen collection, evaluation, techniques of artificial insemination, infertility in male including testicular tumors – cryptorchid, affections of prostate.