Δ

adda247

Quant Mega Quiz for SSC Tier - 1

Q1. If m and n are positive integers and $(m-n)$ is an even number, then $\left(m^{2}-n^{2}\right)$ will always be divisible by:
(a) 4
(b) 6
(c) 8
(d) 12

Q2. Two number are such that their difference, their sum and their product are in the ratio of 1:7:24. The product of the numbers is:
(a) 24
(b) 36
(c) 48
(d) 60

Q3. The digits indicated by * in $3422213^{* *}$ so that this number is divisible by 99 are:
(a) 1, 9
(b) 3,7
(c) 4,6
(d) 5,5

Q4.
Find out the last digit $3^{41} \times 4^{19} \times 5^{17}$?
(a) 5
(b) 0
(c) 1
(d) 2

Q5. Find out the number of different factor of 86400 ?
(a) 96
(b) 128
(c) 72
(d) 112

Q6. If $a^{3} b=a b c=180$, then find the value of C ?
(a) 1
(b) 180
(c) 18
(d) 10

Q7. 4767 exactly divides ${ }^{* * *} 341$, The missing digits are
(a) 468
(b) 363
(c) 386
(d) 586

Q8. A number divided by 68 gives the quotient 269 and remainder zero. If the same number is divided by 67 , then the remainder is:
(a) 0
(b) 1
(c) 2
(d) 3

Q9. The sum of the digits of a two-digit number is 81 less than the number. What is the difference between the digits of the number?
(a) 6
(b) 3
(c) 1
(d) Cannot be determined

Q10. If the digits of a two-digit number are interchanged, the number so obtained is greater than the original number by 27 . If the sum of two digits of the number is 11 , what is the original number?
(a) 47
(b) 38
(c) 35
(d) 49

Q11. A train can cross a tunnel in 24 seconds. Another train can cross the same tunnel in 40 seconds. If length of tunnel is 240 m and ratio of their speed is (faster to slower) $4: 3$, then after how much time both trains will cross each other in opposite direction. Given that, length of faster train is 75% of that of slower train.
(a) 12 sec
(b) 24 sec
(c) 26 sec
(d) 32 sec

Q12. N solid metallic spherical balls of radius ' R ' are melted and recast into a cylindrical rod whose radius is ' r ' and height is ' h '. relation among these parameters are given by $12 \pi h^{-1}=\pi R^{-3} r^{2}$. Find value of ' N '.
(a) 3
(b) 18
(c) 9
(d) 27

Q13. The chord of the contact of tangents drawn from a point on the circle $x^{2}+y^{2}=a^{2}$ to the circle $x^{2}+y^{2}$ $=b^{2}$ touches the circle $x^{2}+y^{2}=c^{2}$ such that $b^{m}=a^{n} c^{p}$ where $m, n, p \varepsilon N$ and m, n, p are prime number to each other, then the value of $m^{2}+n^{2}+p^{2}-4$ is
(a) 2
(b) -2
(c) 1
(d) 3

Q14. The value of $\operatorname{Cosec}\left(57^{\circ}+\theta\right)+\sin 15^{\circ} \sin 46^{\circ} \operatorname{cosec} 30^{\circ} \sec 75^{\circ} \sec 44^{\circ}-\sec \left(33^{\circ}-\theta\right)$ is -
(a) 1
(b) 0
(c) $1 / 2$
(d) 2

Q15.
If $x^{3.5}+x^{-3.5}+2=5$ then find $\left(x^{10.5}+5001\right)+\left(x^{-10.5}-4999\right)$
(a) 18
(b) 2
(c) 20
(d) 0

Q16. A six digit number 789abc is divisible by 7,11 and 13 . Find the value of $(a+b+c)^{2}-76$?
(a) 529
(b) 576
(c) 500
(d) 476

Q17.
Find the value of 76 of $\left(\frac{1}{19}\right) \div 16 \times 8+5\left(4 \frac{2}{5} \div 1 \frac{1}{10} \times 2\right)-4$ of $8 \div 4$
(a) 34
(b) 27
(c) 31
(d) 33

Q18. If the measure of exterior angle of a regular polygon is $\left(21 \frac{3}{17}\right)^{\circ}$, then the ratio of its diagonals to the number of its side is -
(a) $4: 5$
(b) $17: 3$
(c) $3: 17$
(d) $7: 1$

Q19. From the top of a tower, the angles of depression of two objects on the ground at point P and Q on the same side of it, are observed to be 60° and 30° respectively and the distance between the object is 300 m . Find the distance between object at Q and top point of tower.
(a) 300
(b) $\frac{300}{\sqrt{3}}$
(c) $\frac{900}{\sqrt{3}}$
(d) $\frac{300 \sqrt{3}}{3}$

Q20. Given that $(4 x-3)^{3}+(5 x-9)^{3}+(3 x+3)^{3}=(15 x-27)(4 x-3)(3 x+3)$, find the value of $x ; x \neq 3 / 4$
(a) 9
(b) 6
(c) 5
(d) 4

Q21.
If $x^{y^{z}}=1, y^{z^{x}}=125$ and $z^{y^{x}}=243$,
then what is the value of $9 x-10 y-18 z=$?
(a) 18
(b) 15
(c) 12
(d) 5

Q22. The ratio of curved surface area of a right circular cylinder to the total area of its two bases is $2: 1$. If the total surface area of cylinder is $23100 \mathrm{~cm}^{2}$, then what is the volume of the cylinder?
(a) $247200 \mathrm{~cm}^{3}$
(b) $269500 \mathrm{~cm}^{3}$
(c) $312500 \mathrm{~cm}^{3}$
(d) $341800 \mathrm{~cm}^{3}$

Q23. A solid cylinder has radius of base 14 cm and height 15 cm 4 identical cylinders are at from each base as shown is the figure. Height of small cylinder is 5 cm . What is the total surface area of the remaining part?

(a) 3740
(b) 3432
(c) 3124
(d) 2816

Q24. The radius of base of a solid cylinder is 7 cm and its height is 21 cm . It is melted and converted into small bullets, each bullet is of same size. Each bullet consists of two parts a cylinder and a hemisphere on one of its base. The total height of bullet is 3.5 cm and radius of base is 2.1 cm . Approximately how many complete bullets can be obtained?
(a) 83
(b) 89
(c) 74
(d) 79

Q25.

$P^{3}+q^{3}+r^{3}-3 p q r=4$, If $a=q+r, b=r+p$ and $c=p+q$,
then what is the value of $a^{3}+b^{3}+c^{3}-3 a b c$?
(a) 4
(b) 8
(c) 2
(d) 12

Q26.
If $a^{4}+1=\frac{a^{2}}{b^{2}}\left(4 b^{2}-b^{4}-1\right)$, then what is the value of $a^{4}+b^{4}$?
(a) 2
(b) 16
(c) 32
(d) 64

Q27. If $a+b+c=9, a b+b c+c a=26, a^{3}+b^{3}=91, b^{3}+c^{3}=72$ and $a^{3}+c^{3}=35$, then find the value of $a b c$?
(a) 48
(b) 24
(c) 36
(d) 42

Q28.
If $x^{3}-4 x^{2}+19=6(x-1)$, then what is the value of $x^{2}+\frac{1}{x-4}$?
(a) 3
(b) 5
(c) 6
(d) 8

Q29. $x \& y$ are positive integers. If $x^{4}+y^{4}+x^{2} y^{2}=481$ and $x y=12$, then what is the value of $x^{2}-x y+y^{2}$?
(a) 16
(b) 13
(c) 11
(d) 15

Q30.
$x^{y+z}=1, y^{x+z}=1024$ and $z^{x+y}=729,(\mathrm{x}, \mathrm{y}, \mathrm{z}$ are natural numbers) then what is the value of $(z+1)^{y+x+1}$?
(a) 6561

Bank | SSC | Railways
2200+ Total Tests
12 Months Validity
(b) 10000
(c) 4096
(d) 14641

