Adda247

100 Quantitative Aptitude Questions With Solutions for SSC CGL Tier 2 Exam

1. The ages of A and B are in the ratio $5: 7$. Five years ago, their ages were in the ratio 5:8. The respective present ages (in years) are:
(a) 20,28
(b) 15,21
(c) 25,40
(d) 10,14
2. Four years ago, the ratio of ages of A and B was $3: 5$. Ten years from now, the ratio of the ages of A and B will be $5: 6$. Find the sum of present ages?
(a) 32 years
(b) 24 years
(c) 26 years
(d) 22 years
3. The ratio of present ages of A and B is $1: 2$ and 5 years back the ratio was $1: 3$. What will be the ratio of their ages after 7 years?
(a) $7: 12$
(b) $3: 4$
(c) 17: 27
(d) $2: 1$
4. Ram's present age is thrice his son's present age and $2 / 5^{\text {th }}$ of the present age of his father. The average present age of all of them is 46 years. What is the difference of ages of Ram's father and Ram's son at present?
(a) 68 years
(b) 88 years
(c) 78 years
(d) Cannot be determined
5. At present Ranveer is 15 years older than Deepika. 5 years later Deepika will be 10 years old. What is the Present age of Ranveer (in years)?
(a) 15
(b) 20
(c) 25
(d) 30
6. A person was asked to state his age. His reply was- "Take my age 3 years hence, multiply it by 3 , subtract the triple of my age 3 years ago and you will know how old I am." What is the present age of the person (in years)?
(a) 24
(b) 20
(c) 32
(d) 18
7. If $a^{3}-b^{3}=208$ and $a-b=4$, then $(a+b)^{2}-a b$ is equal to
(a) 52
(b) 38
(c) 32
(d) 42
8. If $x+\frac{1}{x}=5$, then $x^{3}+\frac{1}{x^{3}}$ is equal to
(a) 110
(b) 130
(c) 145
(d) 125
9. If $(x-5)^{3}+(x-6)^{3}+(x-7)^{3}=3(x-5)(x-6)(x$ $-7)$, then what is the value of x ?
(a) 6
(b) 7
(c) 5
(d) 18
10. If $(2 x+3)^{3}+(x-8)^{3}+(x+13)^{3}=(2 x+3)(3 x-$ 24) $(x+13)$, then what is the value of x ?
(a) -1.5
(b) -2.5
(c) -2
(d) -1
11. If $a^{3}+b^{3}=5824$ and $a+b=28$, then $(a-b)^{2}+$ ab is equal to
(a) 208
(b) 152
(c) 180
(d) 236
12.If $x-\frac{1}{x}=6$, then $\mathrm{x}^{3}-\frac{1}{x^{3}}$ is equal to
(a) 216
(b) 176
(c) 234
(d) 198

Directions (13-17): Bar graph given below shows number of employees (in thousand) in five different companies in a year and percentage of officer in total employees. Study the following graph carefully and answer the questions below it.
Note - Total employees in each company = officer + workers

13. If ratio of male workers to female worker in company P and company R is $15: 7$ and $13: 12$ respectively, then find the difference between no. of female workers in company P and that of in company R.
(a) 1120
(b) 2400
(c) 1365
(d) 1400
14. No. of worker in company R are approximately what percent more than no. of worker in company S.
(a) 61%
(b) 59%
(c) 57%
(d) 55%
15.If ratio of male officer to female officer in company T is $23: 27$. Then find difference between female officer in company T and no. of worker in company Q.
(a) 29070
(b) 28970
(c) 29970
(d)28070
16.If female workers are 7140 in company S and no. of female worker in company S are 78.5\% more Than male officer in the same company, then find female officers in company S.
(a) 3680
(b) 3280
(c) 3480
(d) 3880
17. Find the average number of officers in company P, Q and T are approximately what percent of total workers in company S .
(a) 20%
(b) 22%
(c) 18%
(d) 26%
18. $A B$ and $A C$ are the two tangents to a circle whose radius is 6 cm . If $\angle B A C=60^{\circ}$, then what is the value (in cm) of $\sqrt{\left.(A B)^{2}+(A C)^{2}\right)}$?
(a) $6 \sqrt{6}$
(b) $4 \sqrt{6}$
(c) $9 \sqrt{3}$
(d) $8 \sqrt{3}$
19. In the given figure, ABC is a right angled triangle. $\angle A B C=90^{\circ}$ and $\angle A C B=60^{\circ}$. If the radius of the smaller circle is 2 cm , then what is the radius (in cm) of the larger circle?

(a) 4
(b) 6
(c) 4.5
(d) 7.5
20.In the given figure, 0 is centre of the circle. Circle has 3 tangents. If $\angle Q P R=45^{\circ}$, then what is the value (in degrees) of $\angle Q O R$?

(a) 67.5
(b) 72
(c) 78.5
(d) 65
21. In the given, two identical circles of radius 4 cm touch each other. A and B are the centres of the two circles. If RQ is a tangent to the circle, then what is the length (in cm) of RQ ?

(a) $3 \sqrt{3}$
(b) $2 \sqrt{6}$
(c) $4 \sqrt{2}$
(d) $6 \sqrt{2}$
22.The radius of two circles is 3 cm and 4 cm . The distance between the centres of the circles is 10 cm . What is the ratio of the length of direct common tangent to the length of the transverse common tangent?
(a) $\sqrt{51}: \sqrt{68}$
(b) $\sqrt{33}: \sqrt{17}$
(c) $\sqrt{66}: \sqrt{51}$
(d) $\sqrt{28}: \sqrt{17}$
23.A line cuts two concentric circles. The lengths of chords formed by that line on the two circles are 4 cm and 16 cm . What is the difference (in cm^{2}) in square of radii of two circles?
(a) 240
(b) 120
(c) 60
(d) 90
24. Two numbers are in the ratio 4 : 5 . If their HCF is 16 , then the sum of these two numbers is
(a) 144
(b) 124
(c) 160
(d) 150
25. Two numbers are in the ratio 4 : 7. If their HCF is 26 , then the sum of these two numbers will be
(a) 312
(b) 364
(c) 338
(d) 286
26.Two numbers are in the ratio $5: 11$. If their HCF is 24 , then the sum of two these numbers is:
(a) 384
(b) 408
(c) 120
(d) 264
27.Two numbers are in the ratio $6: 11$. If their HCF is 28 , then the sum of these two numbers is:
(a) 476
(b) 448
(c) 392
(d) 420
28. Which of the following statement is true?
(a) HCF+LCM of two numbers=Product of two numbers
(b) LCM of two natural numbers is divisible by their HCF.
(c) Two prime numbers are co-prime numbers if their LCM is 1.
(d) HCF of two numbers is the smallest common divisor of both numbers.
29.The HCF and LCM of two numbers is 6 and 5040 respectively. If one of the numbers is 210 , then the other number is :
(a) 630
(b) 144
(c) 256
(d) 30
30.From the top of a 10 m high building, the angle of elevation of the top of a tower is 60° and the angle of depression of the foot of the tower is ϕ, such that $\tan \phi=\frac{2}{3}$. What is the height of the tower to nearest metres?
(a) 34 m
(b) 35 m
(c) 36 m
(d) 33 m
31. A ladder leaning against a wall makes an angle α with the horizontal ground such that $\tan =\frac{3}{4}$. If the foot of the ladder is 5 m away from the wall, what is the length of the ladder?
(a) 5.25 m
(b) 3.75 m
(c) 6.25 m
(d) 4.5 m
32. From the top of a 12 m high building, the angle of elevation of the top of a tower is 60° and the angle of depression of the foot of the tower is θ, such that $\tan \theta=\frac{3}{4}$. What is the height of the tower $(\sqrt{3}=1.73)$?
(a) 41.41 m
(b) 36.22 m
(c) 39.68 m
(d) 37.95 m
33. A ladder leaning against a wall makes an angle θ with the horizontal ground such that $\operatorname{Sin} \theta=\frac{12}{13}$. If the foot of the ladder is 7.5 m from the wall, then what is the height of the point where the top of the ladder touches the wall?
(a) 15 m
(b) 8 m
(c) 18 m
(d) 12 m
34. From the top of 75 m high tower, the angle of depression of two points P and Q on opposite side of the base of the tower on level ground is θ and ϕ, such that $\tan \theta=\frac{3}{4}$ and $\tan \phi=\frac{5}{8}$. What is the distance between the points P and Q ?
(a) 190 m
(b) 200 m
(c) 180 m
(d) 220 m
35. The angle of elevation of top of a tower from a point P, on the ground is θ such that $\tan \theta=\frac{12}{5}$. If distance of the point P, from the base of the tower is 75 m , what is the height of the tower?
(a) 160 m
(b) 200 m
(c) 190 m
(d) 180 m
36. ABC is a triangle. $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=\sqrt{41} \mathrm{~cm}$ and $B C=8 \mathrm{~cm} . A D$ is perpendicular to $B C$. What is the area (in cm^{2}) of triangle ABD?
(a) 12
(b) 6
(c) 10
(d) 20
37.In the given figure, $P Q R$ is a triangle and quadrilateral ABCD is inscribed in it. $\mathrm{QD}=2 \mathrm{~cm}$, $\mathrm{QC}=5 \mathrm{~cm}, \mathrm{CR}=3 \mathrm{~cm}, \mathrm{BR}=4 \mathrm{~cm}, \mathrm{~PB}=6 \mathrm{~cm}, \mathrm{PA}$ $=5 \mathrm{~cm}$ and $\mathrm{AD}=3 \mathrm{~cm}$. What is the area (in cm^{2}) of the quadrilateral $A B C D$?

(a) $\frac{(23 \sqrt{21})}{4}$
(b) $\frac{15 \sqrt{21}}{4}$
(c) $(17 \sqrt{21}) / 5$
(d) $(23 \sqrt{21}) / 5$
38.IN the given figures, ABCD is a square of side 14 cm . E and F are mid points of sides $A B$ and $D C$ respectively. EPF is a semicircle whose diameter is EF. LMNO is a square. What is the area (in cm^{2}) of the shaded region?

(a) 108.5
(b) 94.5
(c) 70
(d) 120
39.In the given figure, $\mathrm{AB}, \mathrm{AE}, \mathrm{EF}, \mathrm{FG}$ and GB are semicircles. $\mathrm{AB}=56 \mathrm{~cm}$ and $\mathrm{AE}=\mathrm{EF}=\mathrm{FG}=\mathrm{GB}$. What is the area (in cm^{2}) of the shaded region?

(a) 414.46
(b) 382.82
(c) 406.48
(d) 394.24
40.Radius of base of a hollow cone is 8 cm and its height is 15 cm . A sphere of largest radius is put inside the cone. What is the ratio of radius of base of cone to the radius of sphere?
(a) $5: 3$
(b) $4: 1$
(c) $2: 1$
(d) $7: 3$
41.The area of a regular hexagon is equal to the area of the square. What is the ratio of the perimeter of the regular hexagon to the perimeter of square?
(a) $\sqrt{6 \sqrt{3}}: \sqrt{3 \sqrt{6}}$
(b) $2 \sqrt{3}: \sqrt{6 \sqrt{2}}$
(c) $\sqrt{6 \sqrt{3}}: 2$
(d) $\sqrt{6 \sqrt{3}}: 2 \sqrt{3}$
42.An alloys contains 32% copper, 24% nickel and rest zinc. How much zinc is present in 12 kg of the alloy?
(a) 672 gm
(b) 6.72 kg
(c) 5.28 kg
(d) 528 gm
43. In what ratio should coffee costing Rs. $2800 / \mathrm{kg}$ be mixed with coffee costing Rs. $1750 / \mathrm{kg}$ so that the cost of the mixture is Rs. $2150 / \mathrm{kg}$.
(a) $8: 13$
(b) $13: 8$
(c) $7: 5$
(d) $5: 7$
44. In an alloy, Zinc and Copper are in the ratio $1: 2$. In the second alloy, the same elements are in the ratio $2: 3$. If there two alloys combined to form a new alloy in which two elements are in the ratio $5: 8$, the ratio of these two alloys in the new alloys is -
(a) $3: 10$
(b) $7: 3$
(c) $3: 7$
(d) $10: 3$
45. A jar contained a mixture for two liquids A and B in the ratio $4: 1$. When 10 L of the mixture was taken out and 10 L of liquid B was poured into the jar, this ratio becomes $2: 3$. The quantity of liquid A contained in the gas initially was -
(a) 4 L
(b) 12 L
(c) 8 L
(d) 16 L
46. Two vessels A and B contain mixtures of milk and water in the ratios $4: 1$ and $9: 11$ respectively. They are mixed in the ratio of $3: 2$. Find the ratio of milk and water in the resulting mixture.
(a) $12: 25$
(b) $15: 37$
(c) $17: 19$
(d) $33: 17$
47.6 litres of milk and water mixture has 75\% milk in it. How much milk should be added to the mixture to make it 90% pure?
(a) 10 litre
(b) 8 litre
(c) 9 litre
(d) 12 litre
48. The number 45789 is divisible by which of the single digit numbers:
(a) Only by 9
(b) Only by 3 and 9
(c) Only by 3
(d) Only by 3 nad 7
49.210102 can be divided exactly by:
(a) 7
(b) 3
(c) 4
(d) 8
50.A gardener planted 1936 samplings in a garden such that there were as many rows of saplings as the columns. The number of rows planted is:
(a) 46
(b) 44
(c) 48
(d) 42
51. Which least number should be added to 1000 so that the number obtained is exactly divisible by 37 ?
(a) 1
(b) 25
(c) 36
(d) 13
52.If a nine digit number $985 x 3678 y$ is divisible by 72 , find the value of $x+y$
(a) 4
(b) 8
(c) -2
(d) 6
53.If it takes 42 days for a pond to get filled with rain water. If the level of water doubles each day. Then how long would it take to fill $1 / 16$ of pond.
(a) 38 days
(b) 39 days
(c) 32 days
(d) 8 days
54.The price of sugar has decreased by 15\%. By what percentage can a person increase the consumption so that there is no change in the expenditure?
(a) $\frac{300}{23} \%$
(b) $\frac{300}{17} \%$
(c) $\frac{50}{3} \%$
(d) $\frac{20}{3} \%$
55.If A's income is 40% more than the income of B, then what percentage of B's income is less than income of A ?
(a) $27 \frac{4}{7} \%$
(b) $28 \frac{5}{7} \%$
(c) $27 \frac{5}{7} \%$
(d) $28 \frac{4}{7} \%$
56.In an examination, 54% of the candidates passed in science and 42% failed in mathematics. If 32% failed in both subjects, what percentage passed in both subjects?
(a) 56%
(b) 48%
(c) 32%
(d) 44%
57.The income of A is 24% more than the income of B. By what percent is the income of B less than the income of A?
(a) $\frac{150}{7} \%$
(b) $\frac{600}{29} \%$
(c) $\frac{500}{31} \%$
(d) $\frac{600}{31} \%$
58.In an examination, 48% of candidates passed in science and 56% failed in mathematics. If 32% failed in both subjects, then what percent of students pass in both subjects?
(a) 24%
(b) 32%
(c) 28%
(d) 22%
59. The price of sugar is decreased by 10%. By what can a person increase the consumption so that there is no change in the expenditure?
(a) $\frac{100}{11} \%$
(b) $\frac{109}{11} \%$
(c) $\frac{100}{9} \%$
(d) 10%
60.A shopkeeper sold two articles for Rs 9471 each. On one, he gained 23% and on the other, he lost 23%. What is the overall percentage gain or loss?
(a) 5.29% loss
(b) 6.29% gain
(c) 5.29% gain
(d) 6.29% loss
61.A shopkeeper marks his goods at a price such that after giving a discount of 25%, he gains 20%. If the cost price of the article is Rs 460 , what is its marked price?
(a) Rs 736
(b) Rs 748
(c) Rs 725
(d) Rs 752
62.The successive discounts of $20 \%, 10 \%$ and 15% is equivalent to a single discount of
(a) 43.5%
(b) 42.2%
(c) 38.8%
(d) 44.5%
63.A shopkeeper sold two articles for Rs 9831 each. On one he gained 13% and on the other, he lost 13%. What is the overall percentage gain or loss?
(a) 6.5% loss
(b) 6.5% gain
(c) 1.69% gain
(d) 1.69% loss
64.The successive discount of $25 \%, 20 \%$ and 10% is equivalent to a single discount of
(a) 46%
(b) 48%
(c) 54%
(d) 44%
65.A shopkeeper marks his good at a price such that after giving a discount of 25%, the gain is 20%. If the marked price of the article is Rs 736 . What is the cost price of the article?
(a) Rs 450
(b) Rs 455
(c) Rs 460
(d) Rs 440
66. What is the sum of the mean proportional between 10.8 and 4.8 and the third proportional of 2 and 4 ?
(a) 15.2
(b) 11.2
(c) 8.2
(d) 10.2
67. What is the ratio of the mean proportional between 8.1 and 3.6 and the third proportional of 2 and 3 ?
(a) $5: 6$
(b) $5: 4$
(c) $4: 5$
(d) $6: 5$
68. What is the ratio of mean proportional between 1.8 and 3.2 and the third proportional of 5 and 3 ?
(a) $3: 5$
(b) $4: 3$
(c) $3: 4$
(d) $5: 3$
69. What is the ratio of mean proportional between 3.6 and 12.1 and third proportional between 2 and 11 ?
(a) $36: 5$
(b) $6: 5$
(c) $11: 36$
(d) $6: 55$
70.Rs. $7,80,516$ is divided among $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D in the proportion of $2: 3: 4: 3$. The share of C is:
(a) Rs. 2,60,172
(b) Rs. 1,95,129
(c) Rs. 1,30,086
(d) Rs. 2,24,562
71.There are 50 paisa, 25 paisa and Rs. 1 coins in a bag in the ratio $5: 8: 1$. If the total value of all the coins is Rs. 55 , how many 25 paisa coins are there in the bag?
(a) 10
(b) 80
(c) 50
(d) 25
72.A sum of Rs 15000 is invested partly at 12% per annum and the remaining at 10% per annum simple interest. If the total interest at the end of 2 yrs is Rs 3344 how much money was invested at 10% per annum?
(a) Rs 6,200
(b) Rs 6600
(c) Rs 6400
(d) Rs 6500
73.A sum of Rs 12800 is invested partly at 15% per annum and the remaining at 12% per annum simple interest. If the total interest at the end of 3 yrs is Rs 5085, then how much money was invested at 15% per annum.
(a) Rs 5,200
(b) Rs 7,500
(c) Rs 5,800
(d) Rs 5,300
74.A sum of Rs 15,600 is invested party at 7\% per annum and the remaining at 9% per annum simple interest. If the total interest at the end of 3 years is Rs 3,738 , how much money was invested at 7\% per annum?
(a) Rs 7,800
(b) Rs 7,900
(c) Rs 7,600
(d) Rs 7,700
75.A sum of Rs. 10,200 is invested partly at 8% per annum and remaining at 6% per annum for 3 years at simple interest. If the total interest is Rs. 2124, how much money was invested at 6% per annum?
(a) Rs. 4,900
(b) Rs. 5,200
(c) Rs. 4,800
(d) Rs. 5,400
76. A borrowed a loan from B at 8% simple interest for 2 years and repaid the loan with interest totaling Rs 191864. The amount of loan taken A is :
(a) Rs 166540
(b) Rs 168920
(c) Rs 165400
(d) Rs 164492
77.Rs. 2,64,000 is invested for 3 years at 8.25% p.a. simple interest. The interest is:
(a) Rs. 87,120
(b) Rs. 43,560
(c) Rs. 21,780
(d) Rs. 65,340
78.9 $9 \frac{3}{4} \div\left[2 \frac{1}{6}+\left\{4 \frac{1}{3}-\left(2 \frac{1}{2}+\frac{3}{4}\right)\right\}\right]$ is equal to
(a) 3
(b) $15 / 4$
(c) 4
(d) $17 / 4$
$79.4 \frac{4}{5} \div \frac{3}{7}$ of $7+\frac{4}{5} \times \frac{3}{10}-\frac{1}{5}$ is equal to
(a) $\frac{7}{5}$
(b) $\frac{8}{5}$
(c) $\frac{34}{25}$
(d) $\frac{41}{25}$
$\mathbf{8 0 . 5} \frac{5}{6}+\left[2 \frac{2}{3}-\left\{3 \frac{3}{4}\left(3 \frac{4}{5} \div 9 \frac{1}{2}\right)\right\}\right]$ is equal to
(a) $\frac{44}{7}$
(b) 7
(c) $\frac{43}{6}$
(d) $\frac{22}{3}$
81.The value of $3 \frac{1}{5}-\left[2 \frac{1}{2}-\left\{\frac{5}{6}-\left(\frac{2}{5}+\frac{3}{10}-\frac{4}{15}\right)\right\}\right]$ is
(a) $\frac{6}{5}$
(b) $\frac{9}{10}$
(c) $\frac{11}{10}$
(d) $\frac{13}{5}$
82. $\frac{6.75 \times 6.75 \times 6.75-4.25 \times 4.25 \times 4.25}{67.5 \times 67.5+42.5 \times 42.5+67.5 \times 42.5}$ is equal to:
(a) 2.5
(b) 0.25
(c) 0.0025
(d) 0.025
83.5 $\frac{1}{5}-\left[3 \frac{1}{2}-\left\{\frac{5}{6}-\left(\frac{3}{5}+\frac{1}{10}-\frac{4}{15}\right)\right\}\right]$ is equal to:
(a) $\frac{21}{10}$
(b) $\frac{7}{5}$
(c) $\frac{7}{3}$
(d) $\frac{8}{3}$
84. A train travels at a speed of $76 \mathrm{~km} / \mathrm{h}$. If it crosses a pole in 36 seconds, the length of the train is:
(a) 720 m
(b) 675 m
(c) 760 m
(d) 630 m
85. If an airplane covers a distance of 980 km in 35 minutes, then what time it will take to cover a distance of 1470 km ?
(a) $\frac{1}{2}$ hour
(b) $1 \frac{1}{8}$ hours
(c) $\frac{7}{8}$ hour
(d) $1 \frac{1}{6}$ hours
86.A boy walks 15 m in 7 seconds and then walks back in 5 seconds. His average speed (in m / s) is:
(a) 6
(b) 2.5
(c) 3.25
(d) 4
87.A part of the journey is covered in 31.5 minutes at $80 \mathrm{~km} / \mathrm{h}$ and the remaining part in 16 minutes at $75 \mathrm{~km} / \mathrm{h}$. The total distance of the journey is:
(a) 45 km
(b) 38 km
(c) 62 km
(d) 54 km
88. A train 100 m long running at uniform speed crosses a station which is 500 m long in 25 seconds. How long will it take for the train to pass a station that is 380 m long?
(a) 21 seconds
(b) 20 seconds
(c) 19 seconds
(d) 22 seconds
89. A train covers a distance of 576 km at a certain speed. If the speed is decreased by $24 \mathrm{~km} / \mathrm{hr}$, it will take 2 hours more to cover the same distance. Find $33 \frac{1}{3} \%$ of original speed.
(a) $32 \mathrm{~km} / \mathrm{hr}$
(b) $24 \mathrm{~km} / \mathrm{hr}$
(c) $38 \mathrm{~km} / \mathrm{hr}$
(d) $28 \mathrm{~km} / \mathrm{hr}$
90. A and B can finish a work together in 30 days. B and C can finish the same work together in 24 and A and C can finish the work together in 40 days. If all three work together, how long will it take them to complete the work?
(a) 15 days
(b) 10 days
(c) 20 days
(d) 5 days
91. A can do a work in 30 days, B can do the same work in 48 days. After working alone for 20 days A left and B started working, how long will B take to complete the work?
(a) 24 days
(b) 28 days
(c) 38 days
(d) 16 days
92.If 15 men can do a piece of work in 14 days, how many men will be needed to do the work in 30 days?
(a) 8
(b) 10
(c) 7
(d) 9
93.The ratio of efficiencies of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ is $4: 6: 7$. Working together, they can complete working in 39 days A and C together can complete $88 \frac{2}{3} \%$ of work in how many days? (approx.)
(a) 53.4 days
(b) 55.7 days
(c) 49 days
(d) 61.8 days
94.If A had worked alone he would have taken 63 hours to do the task. What is B's share, if A and B together on a task finishing it in 36 hours and they get paid Rs. 5,950 for it?
(a) 3600
(b) 3400
(c) 2750
(d) 2550
95.12 persons working 8 hours a day can complete a work in 10 days. In how many days 18 persons working 7 hours day will complete 70% of work?
(a) 9 days
(b) $5 \frac{1}{3}$ days
(c) $6 \frac{1}{5}$ days
(d) $4 \frac{1}{2}$ days
96. If $\tan x=\cot \left(45^{\circ}+2 x\right)$, then what is the value of x ?
(a) 45°
(b) 15°
(c) $\frac{45^{\circ}}{2}$
(d) 20°
97.The value of $\left[\frac{\sin ^{2} 24^{\circ}+\sin ^{2} 66^{\circ}}{\cos ^{2} 24^{\circ}+\cos ^{2} 66^{\circ}}+\sin ^{2} 61^{\circ}+\right.$ $\left.\cos 61^{\circ} \sin 29^{\circ}\right]$
is equal to
(a) 2
(b) 3
(c) 1
(d) 0
98. The value of $\frac{\sin 30^{\circ}-\cos 60^{\circ}+\cot ^{2} 45^{\circ}}{\cos 30^{\circ}-\tan 45^{\circ}+\sin 90^{\circ}}$ is equal to
(a) $\frac{2 \sqrt{3}}{3}$
(b) $\frac{\sqrt{3}}{2}$
(c) $\frac{3}{2}$
(d) $\frac{\sqrt{3}}{4}$
99. If $\tan 3 x=\cot \left(30^{\circ}+2 x\right)$, then what is the value of x ?
(a) 18°
(b) 12°
(c) 10°
(d) 15°
100. The value of $\sin ^{2} 30^{\circ} \cdot \cos ^{2} 45^{\circ}+2 \tan ^{2} 30^{\circ}-$ $\sec ^{2} 60^{\circ}$ is equal to:
(a) $-\frac{13}{12}$
(b) $-\frac{77}{24}$
(c) $-\frac{25}{12}$
(d) $-\frac{1}{12}$

$$
\text { Complete Tier } 1+2 \text { Prep }
$$

Live Classes I Video Courses Test Series leBooks

12+12 Month Validity

Solutions

1. (b): Let present age $=5 x: 7 x$
A. T. Q
$\frac{5 x-5}{7 x-5}=\frac{5}{8}$
$40 x-40=35 x-25$
$5 x=15$
$x=3$.
Present age $=15,21$.
2. (b):

B
Present Age's of A and B $-(3 \times 2)+4 \quad(5 \times 2)+4$ 1014
Sum of present ages of A \& B=24.
3. (c):

4. (c):
A.T.Q., $x+\frac{x}{3}+\frac{5 x}{2}=46 \times 3$
$\mathrm{x}=36$ year
Req. diff. $=90-12=78$ year.
5. (b):

Present age of Deepika = 5 year.
Present age of Ranveer $=20$ years.
6. (d):
$3(x+3)-3(x-3) \Rightarrow$ Present age $=18$ year.
7. (a): $a^{3}-b^{3}=(a-b)\left(a^{2}+b^{2}+a b\right)$
$\Rightarrow \frac{208}{4}=52$
8. (a): $\mathrm{x}+\frac{1}{x}=a, x^{3}+\frac{1}{x^{3}}=\left(a^{3}-3 a\right)$
$x+\frac{1}{x}=5 x^{3}+\frac{1}{x^{3}}=125-15=110$
9. (a): if $x^{3}+y^{3}+z^{3}-3 x y z=0$
then $x+y+z=0$
$x-5+x-6+x-7=0$
$3 \mathrm{x}=18$
$\mathrm{x}=6$
10. (c): $(2 x+3)^{3}+(x-8)^{3}+(x+13)^{3}-3(2 x+$ 3) $(x-8)(x+13)=0$

If $=\mathrm{a}+\mathrm{b}+\mathrm{c}=0$
$2 \mathrm{x}+3+\mathrm{x}-8+\mathrm{x}+13=0$
$4 \mathrm{x}+8=0$
$x=-2$
11. (a): $a^{3}+b^{3}=5824$
$a^{3}+b^{3}=(a+b)\left(a^{2}+b^{2}-a b\right)$
$\frac{5824}{28}=208=a^{2}+b^{2}-a b$
12. (c): $x-\frac{1}{x}=6$
$x^{3}-\frac{1}{x^{3}}=? \quad x^{3}-\frac{1}{x^{3}}=\left(x^{3}+3 a\right)$
$x^{3}-\frac{1}{x^{3}}=216+18=234$
13. (d): no. of female worker in company $\mathrm{P}=$ $40000 \times \frac{88}{100} \times \frac{7}{22}=11200$
no. of female worker in company $\mathrm{R}=$ $35000 \times \frac{75}{100} \times \frac{12}{25}=12600$
Required difference $=12600-11200$ $=1400$
14. (a): no. of worker in company $R=35000 \times$
$\frac{75}{100}=26250$
no. of worker in company $S=24000 \times$ $\frac{68}{100}=16320$
required percentage $=\frac{26250-16320}{16320} \times$ $100 \approx 61 \%$
15. (c): no. of worker in company $Q=36000 \times$ $\frac{90}{100}=32400$
no. of female officer in company $\mathrm{T}=$ $30000 \times \frac{15}{100} \times \frac{27}{50}=2430$
Required difference $=32400-2430=$ 29970
16. (a): male officer in company $S=\frac{7140}{178.5} \times 100=$ 4000
Number of female officers in company S $=24000 \times \frac{32}{100}-4000=3680$
17. (d): no. of officer in company $P=40000 \times$ $\frac{12}{100}=4800$
no. of officer in company $\mathrm{Q}=36000 \times$ $\frac{10}{100}=3600$
no. of officer in company $T=30000 \times$ $\frac{15}{100}=4500$
Average number of officers in P, Q \& T = $\frac{4800+3600+4500}{3}=4300$
no. of worker in company $S=24000 \times$ $\frac{68}{100}=16320$
required percentage $=\frac{4300}{16320} \times 100 \approx$ 26\%
18. (a):

$\mathrm{OB}=6$
So, $\mathrm{AB}=\mathrm{OB} / \operatorname{Tan}(30)=6 \sqrt{3}$
Now
$\sqrt{\left(\mathrm{AB}^{2}+\mathrm{AC}^{2}\right)}$
$\Rightarrow \sqrt{(6 \sqrt{3})^{2}+(6 \sqrt{3})^{2}}$
$=\sqrt{216}=6 \sqrt{6} \mathrm{~cm}$
19. (b):

Let the centers are $\mathrm{O}_{1} \& \mathrm{O}_{2}$
From $\Delta \mathrm{CO}_{1} \mathrm{P}$,
$\sin 30^{\circ}=\frac{\mathrm{O}_{1} \mathrm{P}}{\mathrm{O}_{1} \mathrm{C}}$
$\mathrm{O}_{1} \mathrm{C}=4 \mathrm{~cm}$
$\mathrm{CO}_{2}=6+\mathrm{r}$
$\mathrm{QO}_{2}=\mathrm{r}$
From $\Delta \mathrm{CO}_{2} \mathrm{Q}$,
$\sin 30^{\circ}=\frac{\mathrm{r}}{\mathrm{CO}_{2}}$
$\mathrm{CO}_{2}=2 \mathrm{r}$
$2 \mathrm{r}=6+\mathrm{r}$
$\mathrm{r}=6 \mathrm{~cm}$
20. (a):

Let
$\angle O Q A=\angle O Q R=x$
$\angle Q R O=\angle O R B=y$
In triangle $P R Q$
$\angle \mathrm{Q}+\angle \mathrm{R}+\angle \mathrm{P}=180$
$\Rightarrow 180-2 \mathrm{y}+180-2 \mathrm{x}+45=180$
$2(x+y)=225$
$x+y=112 \frac{1}{2}$
$\angle \mathrm{QOR}=180-(\mathrm{x}+\mathrm{y})=180-112 \frac{1}{2}$
$\Rightarrow 67 \frac{1}{2}$ 。
21. (c):

$\mathrm{QP}=4 \times 4=16$
$\mathrm{AP}=12, \mathrm{AS}=4$
$\mathrm{PS}=\sqrt{(12)^{2}-(4)^{2}}$
$=8 \sqrt{2}$
$\triangle \mathrm{PQR} \sim \triangle \mathrm{PSA}$
$\frac{\mathrm{RQ}}{\mathrm{AS}}=\frac{\mathrm{QP}}{\mathrm{PS}} \Rightarrow \frac{\mathrm{RQ}}{4}=\frac{16}{8 \sqrt{2}}$
$R Q=4 \sqrt{2} \mathrm{~cm}$
22. (b): $r=3, R=4, D=10$

Direct common Tangent $=$
$\sqrt{(D)^{2}-(R-r)^{2}}$
$=\sqrt{100-1}=\sqrt{99}$
Indirect common Tangent $=$
$\sqrt{(\mathrm{D})^{2}-(\mathrm{R}+\mathrm{r})^{2}}=\sqrt{51}$
DCT : ICT $=\sqrt{99}: \sqrt{51}$
$=\sqrt{33}: \sqrt{17}$
23. (c): $\mathrm{AB}=16 \& \mathrm{CD}=4$ (GIVEN IN QUES)

SO,
CO = OD = 2 \&
$A O=O B=8$
In $\triangle \mathrm{MCO}$, let $\mathrm{CM}=\mathrm{r}$ (radius of smaller circle)
$\mathrm{CM}^{2}=\mathrm{OM}^{2}+\mathrm{OC}^{2}$
$r^{2}=0 M^{2}+O C^{2}$
$\mathrm{r}^{2}=0 \mathrm{M}^{2}+(2)^{2} \quad \ldots$ (i)
In $\triangle \mathrm{MBO}$, let $\mathrm{MB}=\mathrm{R}$ (radius of bigger circle)
$M B^{2}=O M^{2}+O B^{2}$
$\mathrm{R}^{2}=0 \mathrm{M}^{2}+(8)^{2}$.
From (i) \& (ii)
$r^{2}-2^{2}=R^{2}-(8)^{2}$
$R^{2}-r^{2}=64-4=60$
24. (a): Sum of No.
$\Rightarrow(4+5) \times 16=144$
25. (d): 4:7

HCF $=26$
Sum of no. $=(4+7) 26$
$=11 \times 26=286$
26. (a): Number are 5×24 \& 11×24

Sum is $=24(5+11)$
$=24 \times 16$
$=384$
27.
(b): $(6+18) 28=17 \times 28$
$=448$
28. (b): L C M of two natural number is divided by their H C F
29. (b): A.T. Q

LCM \times HCF $=$ Product of no.
$\frac{6 \times 5040}{210}=x$
$x=144$
other no. is $\rightarrow 144$
30. (c):

$\tan =\frac{2 \stackrel{x 5}{3}_{3} 10}{\times 5} 15$
$\tan 60^{\circ}=\frac{x}{15}$
$x=15 \sqrt{3}$
Height of Tower $=25.98+10$
Approx. $=36$
31. (c):

Tan $\alpha=\frac{3}{4}$
$4 \mathrm{x} \rightarrow 5$
$5 \mathrm{x}=\frac{5}{4} \times 5=\frac{25}{4}$
length of ladder $=6.25 \mathrm{~cm}$
32. (c):

3-------------12
1-------------4
4-------------16
Height of tower $=27.68+12=39.68 \mathrm{~cm}$
33. (c):

$\operatorname{Sin} \theta=\frac{12}{13}=\frac{\mathrm{P}}{\mathrm{H}}$
$12 \times 1.5=18 \mathrm{~m}$
34. (d):

35. (d):

36. (b):

AS BC=8
LET BD $=$ a then $\mathrm{CD}=8-\mathrm{a}$

$$
\begin{aligned}
& (5)^{2}-a^{2}=(\sqrt{41})^{2}-(8-a)^{2} \\
& 25-a^{2}=41-64-a^{2}+16 a \\
& a=3 \\
& \text { So, } h=4 \mathrm{~cm} \\
& A=\frac{1}{2} \times 4 \times 3=6 \mathrm{~cm}
\end{aligned}
$$

[Hitting method $\rightarrow \mathrm{ABD}$ is right angle triangle Hypotenuse $=5$ so, either base (BD) and perpendicular (Ad) is $3 \& 4$. Because of Triplets ($3,4,5$). In any case area $=\frac{1}{2} \times 4 \times 3=6$]
37. (c):

Are of $\Delta=\frac{1}{2} \times \mathrm{ab} \sin \theta$
Let $\triangle \mathrm{PAB}=\mathrm{x}, \Delta \mathrm{DQC}=\mathrm{y}$
$\Delta \mathrm{BCR}=\mathrm{z}$
$\Rightarrow \frac{\text { area of } \triangle \mathrm{PAB}}{\text { area of } \triangle \mathrm{PQR}}=\frac{\frac{1}{2} \times 5 \times 6 \times \sin \mathrm{P}}{\frac{1}{2} \times 10 \times 10 \times \sin \mathrm{P}}=\frac{3}{10}$
Similarly,
$\frac{\text { area of } \triangle \mathrm{CQD}}{\text { area of } \triangle \mathrm{PQR}}=\frac{1}{8}$ AND $\frac{\text { area of } \triangle \mathrm{BRC}}{\text { area of } \triangle \mathrm{PQR}}=\frac{3}{20}$
Let area of $\triangle \mathrm{PQR}=40$
area of PAB:area of DQC:area of BCR
12 : 5 : 6
Then of $\triangle \mathrm{PQR}=\frac{1}{2} \times 8 \times 2 \sqrt{21}=8 \sqrt{21}$
$40-8 \sqrt{21}$,
So, AREA ABCD $=(40-\{12+5+6\})=$ $17 \rightarrow \frac{8 \sqrt{21}}{40} \times 17=\frac{17 \sqrt{21}}{5}$
38. (b):

FROM THE FIG. Let side of smaller square $=a(L O)$
$\mathrm{LN}=\sqrt{2} \mathrm{a}=7$
$\mathrm{a}=(\mathrm{MN})=\frac{7}{\sqrt{2}}$
area of shaded region -
\Rightarrow area of large square - (area of
semicircle + area of smaller square)
$\Rightarrow 14 \times 14-\left[\frac{22}{7} \times \frac{7 \times 7}{2}+\frac{7}{\sqrt{2}} \times \frac{7}{\sqrt{2}}\right]$
$\Rightarrow 196-\left[77+\frac{49}{2}\right]$
$\Rightarrow 94.5 \mathrm{~cm}^{2}$
39. (d):

According to question
$(7+r)^{2}=(7)^{2}+(28-r)^{2}$
$(7+r)^{2}-(28-r)^{2}=7^{2}$
$\Rightarrow 2 \mathrm{r}=\frac{112}{5}$
Area of shaded region $=\pi r^{2}$
$=\frac{22}{7} \times \frac{112}{10} \times \frac{112}{10}=394.24 \mathrm{~cm}^{2}$
40. (a):

According to fig.

$$
\begin{aligned}
& (15-r)^{2}-r^{2}=9^{2} \text { and } \\
& (15-2 r)=\frac{81}{15}=\frac{27}{5} \Rightarrow r=\frac{24}{5}
\end{aligned}
$$

ratio of radius cone:Ratio of radius of sphere

$$
8: 24 / 5
$$

$$
5: 3
$$

41. (d):

Given in question
Area of PQRSTU = Area of ABCD
Let side of hexagon is h and side of square is x
$6 \times \frac{\sqrt{3}}{4} \times[\text { side of hexagon }(h)]^{2}=[$ side of square (x)] ${ }^{2}$
$\frac{\mathrm{h}^{2}}{\mathrm{x}^{2}}=\frac{2}{3 \sqrt{3}}$
$\frac{\mathrm{h}}{\mathrm{x}}=\frac{\sqrt{2}}{\sqrt{3 \sqrt{3}}}$
$\frac{\text { perimeter of hexagonal }}{\text { Perimeter of square }}=\frac{6 \times \sqrt{2}}{4 \times \sqrt{3 \sqrt{3}}}$
$=\frac{\sqrt{2 \times 3 \times 3 \times \sqrt{3}}}{\sqrt{3 \times 4 \times \sqrt{3} \times \sqrt{3}}}=\frac{\sqrt{6 \sqrt{3}}}{2 \sqrt{3}}$
42.
(c): $\begin{array}{lll}\text { copper } & \text { Zink } & \text { Nickel } \\ 32 \% & 44 \% & 24 \%\end{array}$
44% Zink is 1 kg . alloy.
in $12 \mathrm{~kg} \mathrm{Zink}=12 \times \frac{44}{100}=\frac{132}{25}=5 \cdot 28 \mathrm{~kg}$
43. (a):

44. (a):

45.
(d): $4 x-\frac{4}{5} \times 10=4 x-8$
$x=\frac{1}{5} \times 10=x-2$
$\frac{4 x-8}{x-2+10}=\frac{2}{3}$
$\mathrm{x}=4 \Rightarrow 4 \mathrm{x}=161$
46. (d):

	Milk	Water
Mix I	$4_{\times 4}=16$	$1_{\times 4}=4$
Mix II	9	11

Now, Mix I $\times 3$ and Mix II $\times 2$
We get Mix I : Mix II = 66: 34 or 33: 17
47. (c):

Quality of milk to be added $=\frac{3}{2} \times 6=9$ liters
48. (c): 45789 is divisible by single digit no. 3 .
49. (b): Sum of digits is divisible by 3 .
50. (b): No of rows = x

No of columns $=\mathrm{x}$
$\mathrm{x}^{2}=1936$
$\mathrm{x}=44$
51. (c):
$\quad \frac{27}{37} \begin{array}{r}1000 \\ \frac{74}{260} \\ \frac{259}{1}\end{array}, ~$
37-1=36
36 should be added.
52. (b): 78 y is divisible by 8 , So $\mathrm{y}=4$
$\frac{9+8+5+x+3+6+7+8+4}{9}=\frac{50+x}{9}$
So $\mathrm{x}=4$
$x+y=8$
53. (a): Let total capacity of pond $=16$ unit On 42th day, water in pond $=16$ unit On 41th day, water in pond $=8$ unit On $40^{\text {th }}$ day, water in pond $=4$ unit On $39^{\text {th }}$ day, water in pond $=2$ unit On $38^{\text {th }}$ day, water in pond $=1$ unit On $38^{\text {th }}$ day pond is filled with $\frac{1}{16}$ of total capacity.
54. (b):

55. (d):

$40 \%=\frac{2}{5}$
B's less than $A=\frac{2}{7} \times 100=28 \frac{4}{7} \%$
56. (d): Failed in science $=100-54=46$.

Total failed $=14+32+10=56$
Passed in Both $=100-56=44 \%$
57. (d): $\underset{A}{24 \%}=\frac{24}{100}=\frac{6}{25}$

$=\frac{600}{31} \%$
58. (a):

Passed in Both $=100-76=24 \%$
59. (c):

$\frac{1}{9} \times 100=\frac{100}{9} \%$
60. (a): loss $=23 \%$

Gain $=23 \%$
Over all loss $=\frac{23 \times 23}{100}=5.29 \%$
61. (a):

M.P. $=\frac{460}{75} \times 120$
$=736$ Rs.
62. (c): $20 \%=\frac{1}{5}, 10 \%=\frac{1}{10}, 15 \%=\frac{3}{20}$

5	4
10	9
20	
1000	688

Equivalent discount $=\frac{388}{1000} \times 100=38.8 \%$
63. (d): Gain $\rightarrow 13 \%$

Loss \rightarrow 13\%
Over all loss $\rightarrow \frac{13 \times 13}{100}=1.69 \%$ loss
64. (a):

65. (c): CP MP SP

5	8	6
736		
75	460	

$\frac{736}{120} \times 75=460$
66. (a): Mean proportion $=\sqrt{a b}$,
$\sqrt{10.8 \times 4.8}$,
third proportion $=\frac{b^{2}}{a}$
$=\frac{4 \times 4}{2} \quad=8$
Sum $=7.2+8=15.2$
67. (d): Mean proportion $=\mathrm{a}: \mathrm{b}:: \mathrm{b}: \mathrm{c}$
$b=\sqrt{\mathrm{ac}}$
$=\sqrt{8.1 \times 3.6}=5.4$
Third proportion $=\mathrm{a}: \mathrm{b}:: \mathrm{b}: \mathrm{C}$
$\mathrm{c}=\frac{\mathrm{b}^{2}}{\mathrm{a}}=\frac{9}{2}$
Ratio
$\frac{54}{10}: \frac{9}{2} \Rightarrow 5.4: 4.5$
6:5
68. (b): $1.8: \mathrm{X}:: \mathrm{X}: 3.2$
mean proportion $\Rightarrow x^{2}=\sqrt{1.8 \times 3.2}$
$\mathrm{x}=2.4$
And $5: 3$:: $3: \mathrm{X}$
Third proportion \Rightarrow
$X=\frac{9}{5}$
Req $r \quad$ atio $\Rightarrow \frac{12}{5}: \frac{9}{5}$
$\Rightarrow 4: 3$
69. (d): Mean proportion $=\sqrt{\mathrm{ab}}$
$\sqrt{36 \times 12.1}=6.6$
Third proportion $=\frac{(11)^{2}}{2} \mathrm{a}: \mathrm{b}:: \mathrm{b}: \mathrm{c}$
(Third proportion $=\frac{\mathrm{b}^{2}}{\mathrm{a}}=\mathrm{c}$)
Ratio $=\frac{66}{10}: \frac{121}{2}$
6:55
70. (a): $12-780516$
$1-65043$
4-260172
71. (b):

50P	5	250 P
25 P	8	200 P
1Rs	1	100 P
		$550 \mathrm{P}-5500$
		10

No. of coins of $25 \mathrm{P}=80$
72. (c):

$86+64=150$
150unit-15000
Invest at $10 \%=64 \times 100$

$$
=6400 \text { R.s }
$$

73. (d):

$128 \rightarrow 12800$
Amount invested at $15 \% \rightarrow 5300$
74. (b): Total $\%$ interest $=\frac{3738}{3 \times 1560} \times 100=7 \frac{77}{78} \%$

75. (d): Average rate of interest $=\frac{2124}{3 \times 10200} \times 100$
$=\frac{708}{102}=\frac{354}{51}$

$1 \rightarrow \frac{10200}{17} \times 9 \rightarrow$ investat $6 \%=5400$
76. (c): Rate of interest $=8 \%$

$$
\text { for two year }=8 \times 2
$$

$$
=16 \%
$$

$$
16 \%=\frac{4}{25}>_{\text {Principal }}^{\text {Interest }}
$$

Amount taken for lone $=191864 \times \frac{25}{29}$ $=165400$ Rs.
77. (d): S.I $=\frac{264000 \times 3 \times 8.25}{100}=65340$
78. (a): $\frac{39}{4} \div\left[\frac{13}{6}+\left\{\frac{13}{3}-\left(\frac{5}{2}+\frac{3}{4}\right)\right\}\right]$

$$
\begin{aligned}
& =\frac{39}{4} \div\left[\frac{13}{6}+\frac{13}{12}\right] \\
& =3
\end{aligned}
$$

79. (d): $\frac{24}{5} \div \frac{3}{7}$ of $7+\frac{4}{5} \times \frac{3}{10}-\frac{1}{5}$
$=\frac{24}{5} \times \frac{1}{3}+\frac{4}{5} \times \frac{3}{10}-\frac{1}{5}$
$\Rightarrow \frac{8}{5}+\frac{6}{25}-\frac{1}{5}=\frac{41}{25}$
80. (b): $5 \frac{5}{6}+\left[2 \frac{2}{3}-\left\{3 \frac{3}{4}\left(\frac{19}{5} \times \frac{2}{19}\right)\right\}\right]$

$$
\begin{aligned}
& \frac{35}{6}+\left[\frac{8}{3}-\left\{\frac{15}{4} \times \frac{2}{5}\right\}\right] \\
& \frac{35}{6}+\left[\frac{8}{3}-\frac{3}{2}\right] \\
& \frac{35}{6}+\frac{7}{6}=\frac{42}{6}=7
\end{aligned}
$$

81. (c): $\frac{16}{5}-\left[\frac{5}{2}-\left\{\frac{5}{6}-\left(\frac{12+9-8}{30}\right)\right\}\right]$
$\frac{16}{5}-\left[\frac{5}{2}-\left\{\frac{5}{6}-\frac{13}{30}\right\}\right]$
$\frac{16}{5}-\left[\frac{5}{2}-\frac{12}{30}\right]$
$\frac{16}{5}-\frac{63}{30}=\frac{33}{30}=\frac{11}{10}$
82.

(d): $\frac{a^{3}-b^{3}}{a^{2}+b^{2}+a b}=(a-b)$
$=\frac{2.5}{100}=0.025$
83.

$$
\text { (a): } \begin{aligned}
& =\frac{26}{5}-\left[\frac{7}{2}-\left\{\frac{5}{6}-\frac{13}{30}\right\}\right] \\
& =\frac{26}{5}-\left[\frac{7}{2}-\frac{6}{15}\right] \\
& \frac{26}{5}-\frac{31}{10} \\
& =\frac{21}{10}
\end{aligned}
$$

84. (c): Length of train $=$
$76 \times \frac{5}{18} \times 36$
$=760 \mathrm{~m}$.
85. (c): Speed of airplane $=\frac{980}{35} \times 60$ $=1680$
Time to travel distance $=\frac{1470}{1680}$
$=\frac{7}{8}$ hours.
86. (b): Avg speed $=\frac{2 \times \frac{15}{7} \times 3}{\frac{15}{7}+3}=\frac{\frac{90}{7}}{\frac{36}{7}}=2.5 \mathrm{~m} / \mathrm{s}$
87. (c): $D_{1}=80 \times \frac{31.5}{60}=42 \mathrm{~km}$
$D_{2}=75 \times \frac{16}{60}=20 \mathrm{~km}$
Total Distance $=62 \mathrm{~km}$
88.

(b): $600=25 \times S$
$\mathrm{S}=24 \mathrm{~m} / \mathrm{s}$
$380+100=24 \times t$
$\frac{480}{24}=t$
$\mathrm{t}=20 \mathrm{sec}$
89. (a):
$\left.\begin{array}{cc}\text { Speed } & \text { Time } \\ 24 & 2 \\ 48 & 4 \\ -24\left(\begin{array}{l}72 \\ 96\end{array}\right. & 8^{2}\end{array}\right)+2$
\therefore Original speed $=96 \mathrm{~km} / \mathrm{hr}$
$33 \frac{1}{3} \%$ of original speed $=96 \times \frac{1}{3}=32$ $\mathrm{km} / \mathrm{hr}$
90. (c):
$\begin{array}{lll}\mathrm{A}+\mathrm{B} & \rightarrow & 30 \\ \mathrm{~B}+\mathrm{C} & \rightarrow & 24 \\ \mathrm{C}+\mathrm{A} & \rightarrow & 40\end{array}|120| \begin{aligned} & 4 \\ & 5 \\ & 3\end{aligned}$
$2(\mathrm{~A}+\mathrm{B}+\mathrm{C})=12$
$A+B+C=6$
$A+B+C$ all together work $=\frac{120}{6}=20$ days.
91. (d):

W . D by A in 20 days $=160$
Remaining work by $\mathrm{B}=\frac{80}{5}=16$
92. (c): $15 \times 14=\mathrm{M} \times 30$
$\mathrm{M}=7$
93. (a): A and $\mathrm{C}=\frac{39 \times 17}{11} \times \frac{266}{300}=\frac{176358}{3300}=53.4$ days
94. (d):

95. (b): $\frac{12 \times 8 \times 10}{100}=\frac{18 \times D \times 7}{70}$
$D=\frac{16}{3}$ days $=5 \frac{1}{3}$ days
96. (b): $x+45+2 x=90^{\circ}$
$3 x=45$
$\mathrm{x}=15^{\circ}$
97. (\mathbf{a} : $=\frac{\sin ^{2} 24^{\circ}+\sin ^{2}\left(90^{\circ}-24^{\circ}\right)}{\cos ^{2} 24^{\circ}+\cos ^{2}\left(90-24^{\circ}\right)}+\sin ^{2} 61^{\circ}+$ $\cos 61^{\circ} \sin \left(90^{\circ}-61\right)$
$\Rightarrow \frac{\sin ^{2} 24^{\circ}+\cos ^{2} 24^{\circ}}{\cos ^{2} 24^{\circ}+\sin ^{2} 24^{\circ}}=1+1 \Rightarrow 2$
98. (a): $\frac{\frac{1}{2}-\frac{1}{2}+1}{\frac{\sqrt{3}}{2}-1+1}=\frac{1}{\frac{\sqrt{3}}{2}}$

$$
=\frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}
$$

99. (b): $3 x+30^{\circ}+2 x=90^{\circ}$
$5 x=60^{\circ}$
$\mathrm{x}=12^{\circ}$
100. (b): $\frac{1}{4} \times \frac{1}{2}+2 \times \frac{1}{3}-4$
$\frac{1}{8}+\frac{2}{3}-4$
$\frac{3+16-96}{24}$
$-\frac{77}{24}$

TEST SERIES

BILINGUAL

SSC CGL TIER-II
NEW PATTERN

200+ TOTAL TESTS

