

The Normal Probability Distribution

Definition : Probability Density Function

A probability density function is an equation used to compute probabilities of continuous random variables that must satisfy the following two properties.

- 1. Graph of the equation must be greater than or equal to zero for all possible values of the random variable.
- 2. Area under the curve equals 1.

EXAMPLE: Illustrating the Uniform Distribution

Imagine that a friend of yours is always late. Let the random variable X represent the time from when you are supposed to meet your friend until he shows up. Further suppose that your friend could be on time (x = 0) or up to 30 minutes late (x = 30) with all 1 - minute intervals of times between x = 0 and x = 30 equally likely. That is to say, your friend is just as likely to be from 3 to 4 minutes late as he is to be 25 to 26 minutes late. The random variable X can be any value in the interval from 0 to 30, that is, $0 \le X \le 30$. Because any two intervals of equal length between 0 and 30, inclusive, are equally likely, the random variable X is said to follow a **uniform probability distribution**.

Properties of the Normal Probability Curve:

- 1. The highest point occurs at $x = \mu$.
- 2. It is symmetric about the mean, μ . One half of the curve is a mirror image of the other half, i.e., the area under the curve to the right of μ is equal to the area under the curve to the left of μ equals $\frac{1}{2}$.
- 3. It has inflection points at μ σ and μ + σ .
- 4. The curve is asymptotic to the horizontal axis at the extremes.
- **5.** The total area under the curve equals one.

Properties of the Normal Probability Curve (continued):

6. Empirical Rule:

- Approximately 68 % of the area under the curve is between μ σ and $\mu + \sigma$.
- Approximately 95 % of the area under the curve is between μ 2σ and $\mu + 2\sigma$.
- Approximately 99.7 % of the area under the curve is between μ - 3σ and $\mu + 3\sigma$.

A normal curve has two characteristics : mean (μ) and standard deviation (σ).

Example 1 - normal curves for two populations with different means :

Population #1 Population #2

$$\mu_1 = 50$$

$$\mu_2 = 70$$

$$\sigma = 4$$

$$\sigma = 4$$

Summary: The two curves are exactly the same, except one curve is to the right of the other curve.

Example 2 - normal curves for two populations with different standard deviations.

Population #1

$$\mu_1 = 50$$

$$\mu_2 = 50$$

$$\sigma = 4$$

$$\sigma = 7$$

Draw the normal curves for both populations.

Summary: Increasing the standard deviation causes the curve for Population #2 to become flatter and more spread out. Comparing the two normal curves:

- For Population #1, there is more area under the curve within a given distance of the mean;
- For Population #2, there is more area under the curve away from the mean.

Standardized Variable - A variable is said to be standardized if it has been adjusted (or transformed) such that its mean equals 0 and its standard deviation equals 1.

Standardization can be accomplished using the formula for a z - score $: \mathbf{Z} = \frac{X - \mu}{}$

The z - score represents the number of standard deviations that a data value is away from the mean.

Normal Probability Distributions (or Curves).

- A normal curve is characterized by its mean, μ , and standard deviation, σ .
- Since there are an infinite number of combinations of μ 's and σ 's, there are likewise an infinite number of normal curves.
- One particular type of normal curve is the standard normal curve... a normal curve with $\mu = 0$ and $\sigma =$

The Standard Normal Distribution

Standardizing a Normal Random Variable

Suppose the random variable X is normally distributed with mean μ and standard deviation σ . Then the random variable

$$Z = \frac{X - \mu}{\sigma}$$

is normally distributed with mean $\mu = 0$ and standard deviation $\sigma = 1$. The random variable Z is said to have the standard normal distribution.

Standard Normal Distribution (Z)

Properties of the Standard Normal Curve (Z):

- 1. The highest point occurs at $\mu = 0$.
- 2. It is a bell shaped curve that is symmetric about the mean, $\mu = 0$. One half of the curve is a mirror image of the other half, i.e., the area under the curve to the right of $\mu = 0$ is equal to the area under the curve to the left of $\mu = 0$ equals $\frac{1}{2}$.
- 3. It has inflection points at $\mu \sigma = 0 1 = -1$ and $\mu + \sigma = 0 + 1 = +1$.
- 4. The curve is asymptotic to the horizontal axis at the extremes.
- 5. The total area under the curve equals one.
- 6. Empirical Rule:
- Approximately 68 % of the area under the curve is between 1 and
- Approximately 95 % of the area under the curve is between 2 and + 2.
- Approximately 99.7 % of the area under the curve is between 3 and +3.

